期刊文献+

混合抗噪语音识别模型的设计与仿真 被引量:3

Design and simulation for noisy speech recognition model
在线阅读 下载PDF
导出
摘要 为解决语音识别过程中的抗噪声及抗干扰问题,提高系统的识别精度,利用隐马尔可夫模型HMM优异的时序建模能力及小波变换可以对信号进行多尺度分析并有效提取信号的局部信息的特点,建立了混合语音识别模型.考虑到在语音信号识别过程中信号的非平稳性,采用并行的识别方法分别获取分类信息,根据混合模型的识别算法做出识别决策,减小了系统对环境的依赖性,提高了其自适应能力.仿真实验结果表明,混合模型识别结果比单一HMM模型或小波模型识别结果更佳,提高了整体的识别速度和识别率. To solve anti- noise and interference problems in the speech recognition process and improve the recognition accuracy, in this article, dynamic time sequence modeling of hidden markov model (HMM) and wavelet analysis are applied to extract more effective the local information of signals, and set up a hybrid speech recognition model. In the process of voice signal identification, considering nonstationarity of phonetic signal, parallel identification methods are used to obtain classified information. The result of recognition is made by using recognition algorithm of the hybrid model, it reduces the system's dependence on the environment and improves its adaptive capacity. Recognition experiment shows that this hybrid model has higher performance than hidden Markov model in noisy speech recognition.
出处 《河南理工大学学报(自然科学版)》 CAS 2007年第6期694-699,共6页 Journal of Henan Polytechnic University(Natural Science)
基金 国家自然科学基金资助项目(604740437)
关键词 语音识别 隐马尔可夫模型(HMM) 小波分析 鲁棒性 speech recognition hidden markov model Wavelet analysis Robust
作者简介 张丽(1982-),女,山西临汾人,研究方向为智能控制与信息处理技术E-mail:zhangli00121@163.com
  • 相关文献

参考文献12

二级参考文献41

共引文献51

同被引文献26

  • 1刘维亭,朱志宇.基于小波网络和HMM的语音识别方法[J].电声技术,2004,28(11):56-59. 被引量:2
  • 2赵姝彦,张雪英,焦志平.基于ZCPA和DHMM的孤立词语音识别系统[J].太原理工大学学报,2005,36(3):246-249. 被引量:4
  • 3林遂芳,潘永湘,孙旭霞.基于HMM和小波网络模型的抗噪语音识别方法[J].系统仿真学报,2005,17(7):1720-1723. 被引量:13
  • 4白静,张雪英,侯雪梅.基于RBF神经网络的抗噪语音识别[J].计算机工程与应用,2007,43(22):28-30. 被引量:4
  • 5LEVINSON S E, RABINER L R, SONDHI M M. An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition [J]. The Bell System Technical Journal, 1983, 62 (4): 1 035 - 1 074.
  • 6赵姝彦.张雪英.王稚慧.基于HMM建模的语音识别算法研究[D].西安建筑科技大学,2005.
  • 7Fei M C, Bai L. Pattern recognition method for size series of cocoon filament[J]. Japan Silk Science and Technology, 2012, 14 (9): 81 -85.
  • 8Schultz T, Wand M. Modeling coarticulation in EMG-based con tinuous speech recognition [J]. Speech Communication, 2010, 53 (4): 341-353.
  • 9Benzeghiba M, De Mori R, Deroo O, et al. Automatic speech rec- ognition and speech variability: A review [J]. Speech Communica- tion, 2013, 49 (10): 763-786.
  • 10Mizuhara Y, Hayashi A, Suematsun. Embedding of time series data by dynamic time warping distance [J]. Systems and Computers, Japan, 2012, 37 (3): 1-9.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部