期刊文献+

对流占优的扩散问题的局部间断Galerkin方法 被引量:3

Local Discontinuous Galerkin Method for Convection Dominated Diffusion Problems
在线阅读 下载PDF
导出
摘要 针对具有周期性边界条件对流占优的扩散问题中的二阶导数,引入辅助变量,构造了局部间断Galerkin(LDG)方法,并给出了方法的稳定性结果和误差估计式.局部间断Galerkin方法是Runge-Kutta间断Galerkin方法的推广,具有高阶精度,能够灵活处理复杂区域,易于处理复杂边界的边值问题,能够有效去除近似解在间断、大梯度处产生的虚假振荡.数值实验说明,当有限元空间取为一次多项式空间时,LDG方法具有二阶收敛,误差满足理论估计式.该方法可以推广到更高阶的方程,如Korteweg-de Vries方程、重调和方程等. Local discontinuous Galerkin method (LDGM) for convection-dominated diffusion problems with periodic boundary conditions is constructed. To deal with the derivative of second order, an auxiliary variable is introduced. The stability and error estimations are presented simultaneously. LDGM is an extension of the Runge-Kutta discontinuous Galerkin method with higher accuracy and flexibility, especially for complicated geometries and boundaries. The method enables to effectively remove the spurious oscillations around the discontinuities or strong gradients regions. The numerical experiments show that second order convergence can be obtained when polynomials of degree 1 are chosen and the numerical errors are consistent with the theoretical error estimations. It can be extended to solve partial differential equations with higher order such as KdV equations and biharmonic equations.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第2期234-237,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(10671153)
关键词 局部间断Galerkin方法 对流占优的扩散问题 高阶精度 误差估计 local discontinuous Galerkin method convection-dominated diffusion problems high-order accuracy error estimations
作者简介 王阿霞(1973-),女,讲师,在职博士生; 马逸尘(联系人),男,教授,博士生导师.
  • 相关文献

参考文献8

  • 1KANSCHAT B C, SCHOTZAU D. The local discontinuous Galerkin method for linearized incompressible fluid flow: a review[J]. Computers and Fluids, 2005, 34 :491-506.
  • 2COCKBURN B, SHU C W. The Runge-Kutta method local projection Pl-discontinuous Galerkin method for scalar conservation law [J] Mathematical Modelling and Numerical Analysis, 1991,25:337-361.
  • 3COCKBURN B, SHU C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws :Ⅱ [J]. Mathematics of Computation, 1989,52 : 411-435.
  • 4COCKBURN B, HOUAND S, SHU C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws:Ⅳ[J]. Mathematics of Computation, 1990,54 : 545-581.
  • 5COCKBURN B, SHU C W. The local discontinuous Galerkin for time dependent convection-diffusion systems[J]. SIAM Journal of Numerical Analysis, 1998, 175 . 2440-2463.
  • 6BASSI F, REBAY S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[J]. Journal of Computational Physics, 1997,131. 267-279.
  • 7LOMTEV I, KARNIADAKIS G E. A discontinuous Galerkin method for the Navier-Stokes equations[J]. Journal for Numerical Methods in Fluids, 1999,29:587 -603.
  • 8JOHNSON C. Numerical solution of partial differential equations by the finite element method[M]. Cambridge,UK: Cambridge University Press, 1994.

同被引文献19

  • 1张国亮,张凤宝,王绍亭,陈元勇.用正交配置法求解血液透析超滤的传质动力学模型[J].化工学报,1993,44(5):609-616. 被引量:3
  • 2Reed W H, Hill T R. Triangular mesh methods for the neutron transport equation [R~. Los Alamos Scientific Laboratory, Technical Report LA-UR-73-479,1973.
  • 3Chen Z, Yue X. Numerical homogenization of well singularities in the flow transport through heterogeneous porous media[J]. Multiscale Modeling g~ Simulation,2003,1(2) :260-303.
  • 4Falk R S, Richter G R. Explicit finite element methods for symmetric hyperbolic equations [J]. SIAM Journal on Numerical Analysis, 1999,36(3) : 935-952.
  • 5Delves L M, Hall C A. An implicit matching principle for global element calculationsEJ~. IMA Journal of Applied Mathematics, 1979,23(2) : 223-234.
  • 6Lesaint P,Raviart P. On a finite element method for solving the neutron transport equation EM~. Paris: Univ Paris VI, LaboAnalyse Num6rique, 1974.
  • 7Arnold D N. An interior penalty finite element method with discontinuous elements E J ~. SIAM Journal on Numerical Analysis, 1982,19(4) : 742-760.
  • 8Cockburn B. Discontinuous Galerkin methods for convection- dominated problems [J ]. Lecture Notes in Computational Science and Engineering, 1999,9 ~ 69-224.
  • 9Cockburn B, Shu C W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems[J]. SIAM Journal on Numerical Analysis, 1998,35(6) : 2440-2463.
  • 10Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II;General framework~J3. Mathematics of Computation, 1989,52(186) :411-435.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部