期刊文献+

基于修正PCNN的多传感器图像融合方法 被引量:12

Modified PCNN Based Multisensor Image Fusion Scheme
在线阅读 下载PDF
导出
摘要 多传感器图像融合技术作为信息融合的重要分支和研究热点,已广泛应用在机器视觉、医疗诊断、军事遥感等领域。为了更好地进行多传感器图像融合,将在图像分割、目标识别等领域具有独特优势的脉冲耦合神经网络(pulse coupled neural network,PCNN)引入到多传感器图像融合领域中来,提出了一种基于修正PCNN的多源图像融合方法,该方法在区域分割的基础上,先提取区域特征,然后由特征指导融合过程;同时,从目标区域相对于背景的显著性出发,提出了一种反映目标区域突出性的新特征,并针对传统PCNN参数无法自动设定的难题,提出了基于修正PCNN的参数自动设定方案。实验结果表明,该方法无论在主观视觉效果,还是客观评价参数上均优于基于多分辨分析的融合算法,且克服了传统像素级融合方法中融合图像模糊、对噪声敏感等不足,尤其适用于图像不能严格配准的应用场合。这对于拓宽PCNN的理论研究和实际应用具有一定价值。 Being an efficient method of information fusion, multisensor image fusion has been used in many fields such as machine vision, medical diagnosis, military applications and remote sensing. In this paper, PCNN is introduced in this research field for its interesting properties in image processing, including segmentation, target recognition et al. , and a multisensor image fusion scheme based on modified PCNN is proposed. The basic idea of the scheme is to segment all different input images by PCNN and to use this segmentation to guide the fusion process. At the same time, a new region feature, which emphasized the salience of target regions and its neighbors is proposed. Focusing on the famous difficult problem of PCNN, how to determine PCNN parameters adaptively, an adaptive PCNN parameters determination algorithm is also presented in this paper. Experimental results demonstrate that the proposed fusion scheme outperforms the multiscale decomposition based fusion approaches, both in visual effect and objective evaluation criteria. It avoids some of the well- known problems in pixel-level fusion such as blurring effects and high sensitivity to noise, particularly when there is misregistration of the source images. The research fruits have certain value on the theory research and practical application of PCNN.
出处 《中国图象图形学报》 CSCD 北大核心 2008年第2期284-290,共7页 Journal of Image and Graphics
基金 军队预研项目(403050203) 国防“十五”重点预研项目(41322029) 国防“十一五”重点预研项目(513220208)
关键词 多传感器图像融合 脉冲耦合神经网络 参数设定 客观评价准则 multisensor image fusion, pulse-coupled neural network (PCNN), parameter determination, objective evaluation criteria
作者简介 李敏(1971~),女。副教授,博士。研究领域为图像处理、模式识别、信息融合等。E-mail:limin@mailst.xjtu.edu.cn.
  • 相关文献

参考文献10

  • 1Hall D L, Llinas J. An introduction to multisensor data fusion [ J ]. Proceedings of the IEEE, 1997, 85( 1 ) : 6-23.
  • 2Zhang Z, Blum R S. A categorization of multiscale-decompositionbased image fusion schemes with a performance study for a digital camera application [ J ]. Proceedings of IEEE, 1999, 87 (8) : 1315-1326.
  • 3Eckhorn R, ReitBoeck H J. Feature linking via synchronization among distributed assemblies: simulation of results form cat visual cortex [ J ]. Neural Computation, 1990, 2 ( 3 ) : 293-307.
  • 4Kuntimad G, Ranganath H S. Perfect image segmentation using pulse coupled neural networks[ J]. IEEE Transactions on Neural Networks,1999, 10(3): 591-598.
  • 5马义德,戴若兰,李廉.一种基于脉冲耦合神经网络和图像熵的自动图像分割方法[J].通信学报,2002,23(1):46-51. 被引量:146
  • 6刘勍,马义德,钱志柏.一种基于交叉熵的改进型PCNN图像自动分割新方法[J].中国图象图形学报(A辑),2005,10(5):579-584. 被引量:58
  • 7Gu X D, Guo S D, Yu D H. A new approach for automated image segmentation based on unit-linking PCNN [ A ]. In : Proceedings of the first International Conference on Machine learning and Cybernetics [C], Beijing, China, 2002:175-178.
  • 8毕英伟,邱天爽.一种基于简化PCNN的自适应图像分割方法[J].电子学报,2005,33(4):647-650. 被引量:58
  • 9Karvonen J A. Baltic sea ice SAR segmentation and classification using modified pulse-coupled neural networks[ J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7) : 1566-1574.
  • 10黄继武,戴宪华.基于视觉特性的图象分割编码算法[J].中国图象图形学报(A辑),1999,4(5):400-404. 被引量:13

二级参考文献40

  • 1MA Yide,DAI Rolan,LI Lian,WEI Lin.Image segmentation of embryonic plant cell using pulse-coupled neural networks[J].Chinese Science Bulletin,2002,47(2):167-172. 被引量:28
  • 2王建军,苑玮琦,张宏勋.一种基于相对熵的图象分割算法[J].信息与控制,1997,26(1):67-72. 被引量:8
  • 3Stewart R D,Fermin I,et al.Region growing with pulse-coupled neural networks:an alternative to seeded region growing[J].IEEE Trans.on Neural Networks,2002,13(6):1557-1562.
  • 4Shareef N,Wang D L,et al.Segmentation of medical images using LEGION[J].IEEE Trans.on Medical Imaging,1999,18(1):74-91.
  • 5Kuntimad G,Ranganath H S.Perfect image segmentation using pulse coupled neural networks[J].IEEE Trans.on Neural Networks,1999,10(3):591-598.
  • 6Eckhorn R,ReitBoeck H J,et al.Feature linking via synchronization among distributed assemblies:simulation of results form cat visual cortex[J].Neural Computation,1990,2(3):293-307.
  • 7Ranganath H S,Kuntimad G,et al.Pulse coupled neural networks for image processing[A].Proceedings of IEEE Southeastcon'95,Visualize the Future[C].New York:IEEE,1995.37-43.
  • 8Ranganath H S,Kuntimad G.Image segmentation using pulse coupled neural networks[A].Proceedings of IEEE International Conference on Neural Networks[C],Orlando FL:IEEE,1994.1285-1290.
  • 9Johnson J L,Padgett M L.PCNN models and applications[J].IEEE Trans.on Neural Networks,1999,10(3):480-498.
  • 10Ranganath H S,Kuntimad G.Object detection using pulse coupled neural networks[J].IEEE Trans.on Neural Networks,1999,10(3):615-620.

共引文献223

同被引文献91

引证文献12

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部