期刊文献+

电力系统短期负荷预测新方法 被引量:2

Summarization of New Short-time Load Forecasting Method of Power System
在线阅读 下载PDF
导出
摘要 在分析短期负荷预测特征及其主要影响因素的基础上,比较了专家系统、神经网络、支持向量机这些新一代短期负荷预测方法和组合模型的优缺点,综述了近年来上述方法的应用及研究情况,重点介绍了支持向量机和组合模型两种预测方法,指出了智能化、组合模型、区间概率化是未来短期负荷预测方法研究的主要发展方向,并就短期负荷预测实用化提出了建议。 The advantages and disadvantages of the new methods such as expert system method, ANN, SVM and hybrid ensemble model are compared based on features of short - term load forecasting and the main effects, and the researches and application of the above- mentioned methods are summarized. Two kinds of technologies, SVM and hybrid ensemble model, are emphasized, and finally the future development of short - term load forecasting is described as intelligent technique, probabilistic forecasting and hybrid model, and some advices of practice in this field are presented.
出处 《四川电力技术》 2008年第1期61-65,共5页 Sichuan Electric Power Technology
关键词 电力系统 短期负荷预测 智能方法 组合模型 power system short - term load forecasting intelligent technique hybrid ensemble model
作者简介 唐杰明(1968-),男,硕士研究生,主要从事电力市场及负荷预测研究。
  • 相关文献

参考文献17

  • 1Kwang- Ho Kim, Jong- Keun Park, Kab- Ju Hwang. Implementation of hybrid short - term load forecasting system using artificial neural networks and fuzzy expert systems[J]. IEEE Transactions on Power Systems, 1995,10(3) :1534- 1539.
  • 2Ansafimehr P, Barghinia I, Habibi H, Vafadar N. Short- term load forecasting for Iran national power system using artificial neural network and fuzzy expert system[J]. Power System Technology, 2072. Proceedings. PowerCon 2072. International Conference on Volume 2,13 - 17 Oct. 2072,2(10) : 1082 - 1085.
  • 3Hippert H S, Pedreira C E, Souza R C. Neural networks for shortterm load forecasting: a review and evaluation [J]. IEEE Transactions on Power Systems, 2001,16( 1 ) : 44 - 55.
  • 4鞠平,姜巍,赵夏阳,王俊锴,张世学,刘琰.96点短期负荷预测方法及其应用[J].电力系统自动化,2001,25(22):32-36. 被引量:43
  • 5赵世伟,吴捷,刘永强,杨苹.基于点模式匹配的电力系统短期负荷预测[J].电力系统自动化,2003,27(16):62-66. 被引量:29
  • 6瓦普尼克著,张学工译.统计学习理论[M].北京:电子工业出版社,2004.
  • 7Bo- Juen Chen, Ming- Wei Chang, Chih - Jen lin. Load forecasting using support vector Machines: a study on EUNITE competition 2001 [J]. IEEE Transactions on Power Systems, 2004,19(4) : 1821 - 1830.
  • 8牛东晓,谷志红,邢棉,王会青.基于数据挖掘的SVM短期负荷预测方法研究[J].中国电机工程学报,2006,26(18):6-12. 被引量:121
  • 9Li Yuan- cheng, Fang Ting- jian, Yu Erkeng. Short-term Electrical Load Forecasting Using Least Squares Support Vector Machines[J]. Power System Technology, 2002. Proceedings. PowerCon 2002. International Conference on Volume 1, 13 - 17,2002, (10) :230 - 233.
  • 10张庆宝,程浩忠,刘青山,郑季伟,倪东海.基于粗糙集属性约简算法和支持向量机的短期负荷预测[J].电网技术,2006,30(8):56-59. 被引量:30

二级参考文献83

共引文献333

同被引文献20

  • 1张绍和,黄东惠,杜文广,郜红珍.平滑系数优化的季节性指数平滑法[J].太原工业大学学报,1989,20(2):71-75. 被引量:3
  • 2谢富强,唐耀庚.多层前向神经网络权值初始化的研究进展[J].南华大学学报(自然科学版),2006,20(3):98-101. 被引量:6
  • 3李晓波,罗枚,冯凯.短期负荷预测神经网络方法比较[J].继电器,2007,35(6):49-53. 被引量:12
  • 4康重庆,夏清.电力系统负荷预测[M].北京:中国电力出版社,2009.
  • 5DANESHDOOST M, LOTFALIAN M, BUMROONGGIT G, et al. Neural Network with Fuzzy Set-based Classification for Short-term Load Forecasting[J]. IEEE Trans. on Power Systems, 1998, 13(4): 1386-1391.
  • 6A.Papalexopoulos,T.Hesterburg, Aregression-based approach to short-term load forecasting[ J ] IEEE TransactionsonPowerSystems,1990,5(40)1535-1547.
  • 7Shyh-Jier Huang.Short-Term Load Forecasting Via ARMA Model Identification Including Non-Gaus sian Process Considerations [J].IEEE Transactions on Power Systems,2003,18 ( 2 ):673-679.
  • 8AI-Hamadi H M,Soliman S A.Shortterm electric load forecasting based on Kalinan filtering algorithm with moving windows weather and load model[JlElectric Power Systems Research,2004,(68):47-59.
  • 9Jwo,W.-S.Liu,C.W.Liu,C.-C.Hsiao. Hybrid expert system and simulated annealing approach to optimal reactive power planning[ J ].IEE Proceedings, Generation, Transmission and Distribution, 1995, 142(4): 381-385.
  • 10Bo - Juen Chen, Ming - Wei Chang, Chih - Jen ]in. Load forecasting using support vector Machines : a study on E UNITE competition 2001 [ J ]. IEEE Transactions on Power Systems, 2004,19 (4) :1821 -1830.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部