期刊文献+

双层约束下基于局部和全局信息的图像插值新模型 被引量:2

A Two-layer Constraint Image Interpolation Model Basing on Both Local and Global Information
在线阅读 下载PDF
导出
摘要 该文提出一种双层约束的图像插值模型,模型在原始未插值图像梯度模约束下同时基于局部和全局信息处理。使用偏微分方程处理边缘像素,锐化边缘同时平滑边缘块状效应;平滑区域像素点的插值操作使用非局部均值模型,非局部均值模型通过对原始图像全局信息加权平均得到待处理图像像素值,图像平滑。使用双层约束模型处理纹理图像可以保持纹理特征,平滑纹理部分线形特征位置的块状效应。最后理论和实验结果证明使用双层控制模型可以直接将噪声图像插值放大。 In this paper, a novel two-layer constraint image interpolation model is proposed. The novel model interpolates image under the constraint of gradient magnitude in original un-interpolated image. The edge pixel is processed by Partial Differential Equation (PDE). PDE enhances edge and smoothes jaggies in the edge. The pixel in smooth regions of under-interpolated image is processed by Non Local (NL)-means model. NL-means model gets gray value of pixel by weighted averaging global information in image and image is smoothed. Texture image interpolated by the novel model preserves the entire texture pattern; the jaggies in linear structure of texture is smoothed too. It is even proved by theory and experiments that noisy image can be interpolated directly to the required size using this novel model.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第1期144-148,共5页 Journal of Electronics & Information Technology
基金 国家973项目(2004CB318005) 国家自然科学基金(60472033) 教育部博士点基金(20030004023)资助课题
关键词 图像插值 偏微分方程 非局部均值 双层约束 Image interpolation Partial Differential Equation (PDE) Non-local means Two-layer constraint
作者简介 仵冀颖:女,1982年生,博士,研究方向为图像处理、偏微分方程、小波分析. 阮秋琦:男,1944年生,北京交通大学信息科学研究所所长,教授,博士生导师,研究方向为图像处理、视频编码、计算机视觉、虚拟现实.
  • 相关文献

参考文献1

二级参考文献23

  • 1Lehmann T M, Gonner C, Spitzer K. Survey: Interpolation methods in medical image processing. IEEE Trans. Medical Imaging, 1999, 18(11): 1049-1075.
  • 2Blu T, Thevenaz P, Unser M. Complete parameterization of piecewise-polynomial interpolation kernels. IEEE Trans. Image Processing, 2003, 12(11): 1297-1309.
  • 3Hou H S, Andrews H C. Cubic splines for image interpolation and digital filtering. IEEE Trans. Acoustics, Speech, Signal Processing. 1978, 26(6): 508-517.
  • 4Max N. An Optimal Filter for Image Reconstruction. Graphics Gems II, Arvo J (ed.), Academic Press, 1991, pp.101-104.
  • 5Baker S, Kanade T. Limits on super-resolution and how to break them. IEEE Trans. Pattern Analysis and Machine Intelli9ence, 2002, 24(9): 1167-1183.
  • 6Plaziac N. Image interpolation using neural networks. IEEE Trans. Image Processing, 1999, 8(11): 1647-1651.
  • 7Biancardi A, Cinque L, Lombardi L. Improvements to image magnification. Pattern Recognition, 2002, 35(3): 677-687.
  • 8Li X, Orechard M T. New edge-directed interpolation. IEEE Trans. Image Processing, 2001, 10(10): 1521-1527.
  • 9Belge M, Kilmer M E, Miller E L. Wavelet domain image restoration with adaptive edge-preserving regularization. IEEE Trans. Image Processing, 2000, 9(4): 597-608.
  • 10Chang S G, Cvetkovic Z, Vetterli M. Resolution enhancement of images using wavelet transform extrema extrapolation. In ICASSP'95, 1995, pp.2379-2382.

同被引文献23

  • 1尹学松,齐幼菊,陈小冬,龚祥国.基于对应点的三维医学图像相关性插值[J].系统仿真学报,2005,17(9):2183-2186. 被引量:2
  • 2Gonzalez R C,Woods R E.Digital image processing using Matlab[M]. [S.l.]: Prentice Hall,2005.
  • 3Shi J Z,Reichenbach S E.Image interpolation by two-dimensional parametric cubic convolution[J].IEEE Transactions on Image Processing, 2006,15 (7) : 1857-1870.
  • 4Durand C X,Faguy D.Rational zoom of bitmaps using B-spline interpolation in computerized 2D animation[J].Computer Graphics Forum, 1990,9( 1 ):27-37.
  • 5Chen M,Huang C H,Lee W L.A fast edge-oriented algorithm for image interpolation[J].Image and Vision Computing,2005,23:791- 798.
  • 6Battiato S,Gallo G,Stanco F.A locally adaptive zooming algorithm for digital images[J].Image and Vision Computing,2002,20:805-812.
  • 7Arandiga F,Donat R,Mulet P.Adaptive interpolation of images[J]. Signal Processing, 2003,83 : 459-464.
  • 8Chuah C S,Leou J J.An adaptive image interpolation algorithm for image/video processing[J].Pattern Recognition,2001,34:2383- 2393.
  • 9Hu min,Tan Jie-qing.Adaptive osculatory rational interpolation for image processing[J].Journal of Computational and Applied Mathematics, 2006,195 : 46-53.
  • 10Lehmann T M,Gonner C,Spitzer K.Survey:Interpolation methods in medical image processing[J].IEEE Transactions on Medical Imaging, 1999,18( 11 ): 1049-1075.

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部