期刊文献+

利用信道编码实现时间分集 被引量:3

Achieving Time Diversity by Using Channel Code
在线阅读 下载PDF
导出
摘要 在无线信道中,衰落是影响系统性能的重要因素,而分集技术是对抗衰落的有效手段。该文提出一种利用信道编码,通过在两个码字间进行简单变换,将每个符号的信息分散到两个码字中,同时也将衰落的影响分散到两个码字中,从而获得分集增益。结果显示这种方法能使信道编码,特别是采用概率译码算法的编码(如LDPC编码),纠随机差错的能力更强,能在不增加发射功率和带宽的情况下获得时间分集增益,带来系统性能的提升。 The diversity technology is an effective method to resist fading, which is one of the most important factors that influence the system performance in the wireless channel. This paper proposes a time diversity method, in which a simple transform is taken between the symbols of two channel code words to enable the information of each symbol and the influence of fade to be dispersed into two code words. The advantage of the channel code, particularly the codes which adopt the probability decoding algorithm, can be fully utilized. This method can help improve the system performance without increasing the transmitting power and bandwidth.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2008年第1期35-38,共4页 Journal of University of Electronic Science and Technology of China
基金 重庆市自然科学基金(CSTC2006BB2363) 教育部留学回国人员科研启动基金([2005]383) 重庆市留学回国人员科技活动择优项目
关键词 信道编码 码字 分集 衰落 低密度奇偶校验(LDPC)编码 变换 channel code code word diversity fading low-density parity-check(LDPC) code transform
作者简介 雷维嘉(1969-),男,博士生,副教授,主要从事无线通信传输技术方面的研究。
  • 相关文献

参考文献10

  • 1PROAKIS J G . Digital communications[M]. 4th ed. New York: McGraw-Hill Higher Education, 2001 : 821-839.
  • 2GALLAGER R G.Low-density parity-check codes[M]. Cambridge, Mass: MIT Press, 1963.
  • 3DAVEY M C. Error-correction using low-density paritycheck codes[D/OL]. [2002-01-18]. http://www.inference.phy. cam.ac.uk/mcdavey/papers/davey_phd.html.
  • 4VITERBO E, BOUTROS J. A universal lattice code decoder for fading channel[J]. IEEE Transaction on Information Theory, 1999, 45(5): 1639-1642.
  • 5DAVEY M C, MACKAY D J C. Low density parity check codes over GF(q)[J]. IEEE Communications Letters, 1998, 2(6): 165-167.
  • 6HONARY B, MOINIAN A, AMMAR B. Construction of well-structured quasi-cyclic low-density parity check codes[J]. IEE Communications Proceedings, 2005, 152(6): 1081-1085.
  • 7MYUNG S, YANG K, KIM J. Quasi-cyclic LDPC codes for fast encoding[J]. IEEE Transactions on Information Theory, 2005, 51(8): 2894-2901.
  • 8雷维嘉,李祥明,李广军.带宽有效传输的GF(q)上LDPC编码设计[J].电子与信息学报,2007,29(4):884-887. 被引量:1
  • 9袁燕,王宗欣.一种新的LDPC译码算法[J].信号处理,2007,23(4):536-538. 被引量:1
  • 10林雪红,吴伟陵.LDPC码的改进译码算法[J].电路与系统学报,2007,12(3):128-130. 被引量:2

二级参考文献20

  • 1Gallager R G.Low-Density Parity-Check Codes.Cambridge,Mass.,MIT Press,1963,Chapter 1,4.
  • 2Davey M C and MacKay D J C.Low density parity check codes over GF(q).IEEE Communications Letters,1998,2(6):165-167.
  • 3Davey M C.Error-correction using low-density parity-check codes.[Ph.D Thesis],University of Cambridge,1999.http://www.inference.phy.cam.ac.uk/mcdavey/papers/davey_phd.html/
  • 4Kschischang F R,Frey B J,and Loeliger H A.Factor graphs and the sum-product algorithm.IEEE Trans.on Inform.Theory,2001,IT-47(2):498-519.
  • 5Li Xiangming and Soleymani M R.A proof of the Hadamard transform decoding of the belief propagation algorithm for LDPCC over GF(q).IEEE Vehicular Technology Conference,VTC2004-Fall,Los Angeles,Sep.26-29,2004,Vol.4:2518-2519.
  • 6Gallager R G.Low density parity check codes[J].IRE Tran.on IT,1962,8(1):21-28.
  • 7Berrou C,Glavieux A,Thitimajshima P.Near Shannon limit error-correcting coding and decoding:Turbo codes[A].ICC[C].Geneva,Switzerland,1993.1064-1070.
  • 8MacKay D.J.C.Good error-correcting codes based on very sparse matrice[J].IEEE Trans.Inform.Theory,1999,45(2):399-431.
  • 9MacKay D J C,Neal R M.Near Shannon limit performance of low density parity check codes[J].Electronics Letters,1996,32(18):1645-1646.
  • 10R. G. Gallager, Low-Density Parity-Check codes. Cambridge, MA: M. I. T Press, 1963.

共引文献1

同被引文献27

  • 1张琳,秦家银.最大比合并分集接收性能的新的分析方法[J].电波科学学报,2007,22(2):347-350. 被引量:5
  • 2李荣海,任香凝,刘莹.数字对流层散射传输技术新动向综述[J].无线电通信技术,2007,33(3):8-10. 被引量:12
  • 3李冬,房朝辉,段俊宏.美军对流层散射通信及未来发展[J].国防科技,2007,28(7):94-96. 被引量:5
  • 4Diana Calval, Miguel Angel Zuniga Garcial, and Carlos Duchanoy Martinez. Urine and copro recognition with generalized entropy and neural networks[J]. International Journal of Computer Science and Network Security, 2009,9(4): 173-179.
  • 5Kumar K M P and Kumar N. Tsallis entropy based microcalcification segmentation[J]. ICGST-GVIP Journal, 2009, 9(1): 49-55.
  • 6Staring M, Van der Heide U A, Klein S, et al.. Registration of cervical MRI using multi-feature mutual information[J]. IEEE Transactions on Medical Imaging, 2009, 28(9): 1412-1421.
  • 7Hong H and Schonfeld D. Maximum-entropy expectation- maximization algorithm for image reconstruction and sensor field estimation[J]. IEEE Transactions on Image Processing, 2008, 17(6): 897-907.
  • 8Singh B and Singh A P. Edge detection in gray level images based on the Shannon entropy[J]. Journal of Computer Science, 2008, 4(3): 186-191.
  • 9Rathie P N and Da Silva S. Shannon, Levy, and Tsallis: a note[J]. Applied Mathematical Sciences, 2008, 2(28): 1359-1363.
  • 10Mohapatra A, Mishra P M, and Padhy S. Modeling biological signals using information-entropy with Kullback-Leibler- divergence[J]. International Journal of Computer Science and Network Security, 2009, 9(1): 147-154.

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部