期刊文献+

基于强化学习方法的ATM网络ABR流量控制 被引量:2

Reinforcement Learning Approach to ABR Traffic Control of ATM Networks
在线阅读 下载PDF
导出
摘要 针对异步传输模式(ATM)网络的拥塞问题,将强化学习方法应用于拥塞控制器的设计之中.该方法不依赖于网络的数学模型和先验知识,而是通过试错和与环境的不断交互获得知识,从而改进行为策略,具有自学习的能力.控制器通过调节可用比特速率(ABR)业务发送数据的速率,使网络中可能发生拥塞的节点的缓冲器队列长度逼近给定值,从而避免拥塞的发生,保证网络的稳定运行.通过一系列仿真实验验证了该方法的有效性. The reinforcement learning approach is applied to the design of controller to solve the congestion problem in ATM(asynchronous transfer mode) networks. This approach does not rely on the mathematic model and priori-knowledge of network, but acquires the knowledge through trial-and-error method and interacts with environmental conditions to improve its behavior strategy. So, it has the self-learning ability and the queue length of buffer at bottleneck node thus approximates to the set value by readjusting the source traffic rate in the ABR(available bit rate) service. The stability of the system is therefore provided and able to avoid possible occurrence of congestion. Simulation results show the effectiveness of the approach proposed.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第1期17-20,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(62074009) 流程工业综合自动化教育部重点实验室开放课题
关键词 ATM网络 ABR业务 拥塞控制 流量控制 强化学习 ATM network ABR service congestion control traffic control reinforcement learning
作者简介 李鑫(1982-),男,辽宁沈阳人,东北大学博士研究生;Correspondent: LI Xin, E-mail: lixin820106@126.com 井元伟(1956-),男,辽宁西丰人,东北大学教授,博士生导师.
  • 相关文献

参考文献10

  • 1Jagannathan S.Predictive congestion control of ATM networks:multiple sources/single buffer scenario[J].Automatica,2002,38(5):815-820.
  • 2Lee S J,Hou C L.Neural-fuzzy system for congestion control in ATM networks[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2000,30(1):2-9.
  • 3任涛,井元伟.基于PSO-PID的ABR流量控制[J].东北大学学报(自然科学版),2007,28(1):14-18. 被引量:3
  • 4Gnerin E,Habib I W,Palazzo S,et al.Intelligent techniques in high speed networks[J].IEEE Journal on Selected Areas in Communications,2000,10(2):145-155.
  • 5高阳,陈世福,陆鑫.强化学习研究综述[J].自动化学报,2004,30(1):86-100. 被引量:285
  • 6张雁冰,杭大明,马正新,曹志刚.基于再励学习的主动队列管理算法[J].软件学报,2004,15(7):1090-1098. 被引量:7
  • 7Chatovich A,Okug S,Dundar G.Hierarchical neuro-fuzzy call admission controller for ATM networks[J].Computer Communications,2001,24:1031-1044.
  • 8Hsiao M C,Hwang K S,Tan S W,et al.Reinforcement learning congestion controller for multimedia surveillance system[C]∥Proceedings of the 2003 IEEE International Conference on Robotics and Automation.Taipei:Institute of Electrical and Electronics Engineers Inc,2003:4403-4407.
  • 9Hsiao M C,Tan S W,Hwang K S,et al.A reinforcement learning approach to congestion control of high-speed multimedia networks[J].Cybernetics and Systems,2005,36(2):181-202.
  • 10Rajesh M,Kandadai,Tien J M.A knowledge-based generating hierarchical fuzzy-neural controller[J].IEEE Transactions on Neural Networks,1997,8(6):1531-1540.

二级参考文献33

  • 1王建辉,黄敏,顾树生.基于PSO的板形板厚小波神经网络解耦PID控制[J].东北大学学报(自然科学版),2005,26(3):224-227. 被引量:5
  • 2[1]Jacobson V, Karels MJ. Congestion avoidance and control. ACM SIGCOMM Computer Communication Review, 1988,18(4):314~329.
  • 3[2]Floyd S, Jacobson V. Random early detection gateways for congestion avoidance. IEEE/ACM Trans. on Networking, 1993,1(4):397~413.
  • 4[3]Floyd S. A report on some recent development in TCP congestion control. IEEE Communication Magazine, 2001,39(4):84~90.
  • 5[4]Christiansen M, Jeffay K, Ott D, Smith FD. Tuning RED for Web traffic. In: Proc. of the ACM SIGCOMM 2000. Stockholm: ACM Press, 2000. 139~150.
  • 6[5]Ott TJ, Lakshman TV, Wong LH. SRED: Stabilized RED. In: Proc. of the INFOCOM'99. New York: IEEE Communications Society, 1999. 1346~1355.
  • 7[6]Lin D, Morris R. Dynamics of random early detection. In: Proc. of the SIGCOMM'97. Cannes: ACM Press, 1997. 127~137.
  • 8[7]Anjum F, Tassiulas L. Balanced-RED: An algorithm to achieve fairness in Internet. http://www.isr.umd.edu/CSHCN/
  • 9[8]Feng W, Kandlur DD, Saha D, Shin KG. A self-configuring RED gateway. In: Proc. of the INFOCOM'99. New York: IEEE Communications Society, 1999. 1320~1328.
  • 10[9]Feng W, Kandlur DD, Saha D, Shin KG. Blue: A new class of active queue management algorithms. Technical Report, UM CSE-TR-387-99, 1999.

共引文献291

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部