摘要
针对异步传输模式(ATM)网络的拥塞问题,将强化学习方法应用于拥塞控制器的设计之中.该方法不依赖于网络的数学模型和先验知识,而是通过试错和与环境的不断交互获得知识,从而改进行为策略,具有自学习的能力.控制器通过调节可用比特速率(ABR)业务发送数据的速率,使网络中可能发生拥塞的节点的缓冲器队列长度逼近给定值,从而避免拥塞的发生,保证网络的稳定运行.通过一系列仿真实验验证了该方法的有效性.
The reinforcement learning approach is applied to the design of controller to solve the congestion problem in ATM(asynchronous transfer mode) networks. This approach does not rely on the mathematic model and priori-knowledge of network, but acquires the knowledge through trial-and-error method and interacts with environmental conditions to improve its behavior strategy. So, it has the self-learning ability and the queue length of buffer at bottleneck node thus approximates to the set value by readjusting the source traffic rate in the ABR(available bit rate) service. The stability of the system is therefore provided and able to avoid possible occurrence of congestion. Simulation results show the effectiveness of the approach proposed.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2008年第1期17-20,共4页
Journal of Northeastern University(Natural Science)
基金
国家自然科学基金资助项目(62074009)
流程工业综合自动化教育部重点实验室开放课题
关键词
ATM网络
ABR业务
拥塞控制
流量控制
强化学习
ATM network
ABR service
congestion control
traffic control
reinforcement learning
作者简介
李鑫(1982-),男,辽宁沈阳人,东北大学博士研究生;Correspondent: LI Xin, E-mail: lixin820106@126.com
井元伟(1956-),男,辽宁西丰人,东北大学教授,博士生导师.