期刊文献+

利用微卫星PCR技术分析山猪的遗传结构 被引量:11

Analysis of the Genetic Structure of Shan Pig by Microsatellite PCR
在线阅读 下载PDF
导出
摘要 选用世界粮农组织(FAO)和国际动物遗传学会(ISAG)联合推荐的23个微卫星位点对山猪群体的遗传多样性进行检测。通过等位基因频率、有效等位基因数、杂合度、多态信息含量的计算以及瓶颈效应分析,判断山猪群体目前遗传结构和濒危状况。结果表明,23个微卫星座位的多态信息含量在0.452-0.847之间。群体平均多态信息含量和平均杂合度分别为0.686和0.731。瓶颈效应分析表明,山猪群体拥有极显著的杂合度过剩位点数,在无限等位基因模型和逐步突变模型下的平均杂合度为0.559和0.672,推断其有效群体大小近几十年在明显下降,从而说明山猪群体已经处于被灭绝的威胁中。上述研究结果对于山猪的保种和开发利用具有重要的指导意义。 The genetic diversity of Shan pig was surveyed using twenty-three microsatllites recommended by the International Society for Animal Genetics (ISAG) and Food and Agriculture Organiazation (FAO). By means of the allele frequencies, effective number of alleles, heterozygosity, polymorphism information content and bottleneck analysis, the genetic structure and the extent of being in severe danger of Shan pig were estimated . The results was as follows: the polymorphism information cotents of 23 microsatllites in Shan pig were 0. 452 to 0. 847. The average polymorphism information cotent and heterozygosity of 23 microsatellite markers in Shan pig respectively were 0. 686 and 0. 731. The result of bottleneck analysis showed the Shan pig population exhibited a significant number of loci with heterozygosity excess (the average heterozygosity under infinite allele model and stepwise mutation model in Shan pig respectively were 0. 559 and 0. 672), which indicated Shan pig population had experienced a recent reduction of its effective population size, and the population was in severe danger. The results could establish scientific basis for the conservation and utilization of Shan pig breed resource.
出处 《云南农业大学学报》 CAS CSCD 2008年第1期79-83,共5页 Journal of Yunnan Agricultural University
基金 高等学校博士学科点专项科研基金资助项目(20050319009)
关键词 微卫星 山猪 遗传结构 microsatellite Shan pig genetic structure
作者简介 伍革民(1972-),男,湖南新化人,讲师,博士,主要从事动物分子遗传学领域的研究。E-mail:geminwu@ynau.edu.cn 通讯作者
  • 相关文献

参考文献8

二级参考文献36

  • 1李金莲,芒来,石有斐.利用微卫星标记对蒙古马和纯血马遗传多样性的研究[J].畜牧兽医学报,2005,36(1):6-9. 被引量:32
  • 2[3]Barker J S F.A global protocal for determining genetic distance among domestic livestock breeds.In:Proceedings of the 5th world congress on genetics applied to livestock production,1994,21:501~508.
  • 3[6]Raymond M,Rousset F.Population genetics software for exact tests and ecumenicism.Journal of Heredity,1995,86:248~249.
  • 4[8]Botstein D,White R,Skolnick M.Construction of a genetic linkage map in man using restriction fragment length polymorphisms.Am J Hum Genet,1980,32:314~331.
  • 5[9]Ota T.Genetic distance and phylogenetic analysis.Institute of Molecular Evolutionary Genetics,the Pennsylvania State University,1993.
  • 6[10]Nei M.Genetic distance between populations.Amer Naturalist,1972,106:283~293.
  • 7[11]Nei M,Tajima F,Tateno Y.Accuracy of estimated phylogenetic trees from molecular data.Journal of Molecular Evolution,1983,19:153~170.
  • 8[12]Sneath P H A,Sokal R S.Numerical taxonomy-the principle and practice of numerical classifications.San Francisco:W H Freeman,1973.
  • 9[15]Slatkin M.A measure of population subdivision based on microsatellite allele frequencies.Genetics,1995,139:457~462.
  • 10[16]Takezaki N,Nei M.Genetics distances and reconstruction of phylogenetic trees from microsatellite DNA.Genetics,1996,144:389~399.

共引文献159

同被引文献135

引证文献11

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部