期刊文献+

Co-regular集的可计算性探讨

Computability of Co-regular Subsets on Metric Spaces
在线阅读 下载PDF
导出
摘要 引入了在TTE框架下,利用开集和闭集的表示式,定义了度量空间中co-regular集的若干不等价表示式;并对这些表示式的强弱关系进行了论证。研究表明:这些表示式的强弱,有一个明确的顺序;在被引入的不等价表示式中,η:=θ<∧ψ>是co-regular集所有表示式中最强的。 Concepts and results will be represented in "Type-2 Theory of Effectivity", which is the best framework of computable analysis. For co-regular subsets in metric spaces, several reasonable representations and its induced computability have been suggested. With respect to reducibility, there is a order for those distinct basic notions. It has also been shown that η:=θ〈∧^-ψ〉 is the strongest representation among the distinct representations.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第6期14-17,共4页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(60573011 14010638)
关键词 第二类能行性理论 可计算性 表示式 co-regular集 type-2 theory of effectivity computability representations co-regular subset
作者简介 邱玉文(1966年生),男,博士研究生,副教授;E-mail:qyw1122@sina.com
  • 相关文献

参考文献2

二级参考文献8

  • 1WEIHRAUCH K.Computable Analysis[M].Springer,2000.
  • 2KURATOWSKI K.Topology[M].Academic Press,1996.
  • 3ZIEGLER M.Computability on regular subsets of Euclidean spaces[J].Math Log Quart,2002,48(1):157-181.
  • 4ZIEGLER M.Computable operators on regular subsets[J].Math Log Quart,2004,50:392-404.
  • 5GE X,NERODE A.On Extreme points of convex compact Turing located sets[J].LFCS Springer LNCS,1994,813:114-128.
  • 6ABBAS E.Computable Banach spaces via domain theory[J],Theoretical Computer Science,1999,219:169-184.
  • 7HERTLING P.An effective Riemann mapping theorem[J].Theoretical Computer Science,1999,219:225-265.
  • 8X.Y. Zhu,Ph.D Thesis[]..1990

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部