摘要
引入了在TTE框架下,利用开集和闭集的表示式,定义了度量空间中co-regular集的若干不等价表示式;并对这些表示式的强弱关系进行了论证。研究表明:这些表示式的强弱,有一个明确的顺序;在被引入的不等价表示式中,η:=θ<∧ψ>是co-regular集所有表示式中最强的。
Concepts and results will be represented in "Type-2 Theory of Effectivity", which is the best framework of computable analysis. For co-regular subsets in metric spaces, several reasonable representations and its induced computability have been suggested. With respect to reducibility, there is a order for those distinct basic notions. It has also been shown that η:=θ〈∧^-ψ〉 is the strongest representation among the distinct representations.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第6期14-17,共4页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金资助项目(60573011
14010638)
作者简介
邱玉文(1966年生),男,博士研究生,副教授;E-mail:qyw1122@sina.com