期刊文献+

室温生长MgO底层诱导(001)取向FePt薄膜的有序化过程对FePt成分的依赖 被引量:1

Composition dependence of L1_0 ordering of FePt(001) thin films on MgO underlayer grown at room temperature
原文传递
导出
摘要 室温下通过磁控溅射在表面热氧化的Si基片上生长了MgO/FexPt100-x双层膜和FexPt100-x单层膜系列样品,FexPt100-x的原子成分x=48—68.研究了热处理前后不同成分FePt薄膜的晶体结构和磁性的变化,尤其是MgO底层的引入对FePt的晶体结构和磁性的影响.实验结果显示,直接生长在基片上的FePt薄膜具有较强的(111)织构,而经过MgO底层诱导,所有不同成分的制备态FePt薄膜都表现出一定的(001)取向.热处理后,单层膜样品的强烈(111)织构基本不变,当Fe和Pt接近等原子比即52∶48时,薄膜最容易发生有序化;对于生长在MgO底层的FePt薄膜,所有样品的(001)织构在退火后显著增强,有序化对FePt成分的依赖完全不同于单层膜的情形.当Fe和Pt原子比为59∶41时,生长在MgO底层上的FePt薄膜最容易有序化,表现出非常好的垂直易磁化特性,通过MgO底层对FePt薄膜微结构进而对其有序化的影响,对此进行了解释. We investigated the effect of extensive compositional change on the structure and magnetic properties of the post-annealed FexPt100-x (48 ≤ x ≤ 68) thin films with and without MgO underlayer deposited at room temperature. It was found that, during annealing, the FePt films on MgO underlayer with Fe-rich composition around 59at% exhibit much faster ordering than those with other compositions although the single layer FePt films were found to have the optimum composition for the chemical ordering of only slightly Fe-rich composition of 52at% of Fe. The film of MgO( 10 nm)/Fe59 Pt41 (8 nm) after annealing at 600 ℃ for 30 min showed perpendicular magnetization with coercivity about 800 kA/m and the squareness was close to 1 due to the formation of (001) oriented ordering phase. The results of FePt thin films on MgO underlayer deposited at room temperature present a striking contrast with those of FePt grown on heated MgO single crystal substrate, where the optimum composition for the ordering was around 62at% of Pt. An interpretation on the observed experimental phenomena is given in this paper.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2007年第12期7266-7273,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:50271081)资助的课题.~~
关键词 FePt(001)薄膜 L10相 FePt(001) film, L10 phase
  • 相关文献

参考文献22

  • 1Weller D, Moser A, Folks L, Best M E, Lee W, Toney M F, Schwiekert M, Thiele J U, Doemer M F 2000 IEEE Trans. Magn. 36 10.
  • 2Charap S H, Lu P L, He Y 1997 IEEE Trans. Magn. 33 978.
  • 3Cebollada A, Weller D, Sticht J, Harp G R, Farrow R F C, Marks R F, Savoy R, Scott J C 1994 Phys. Rev. B 50 3419.
  • 4Farrow R F C, Weller D, Marks R F, Toney M F, Cebollada A, Harp G R 1996 J. Appl. Phys. 79 5967.
  • 5Jeong S, Hsu Y N, Laughlin D E, McHenry M E 2000 IEEE Trans. Magn. 36 2336.
  • 6Permnal A, Ko H S, Shin S C 2003 Appl. Phys. Lett. 83 3326.
  • 7Shima T, Takanashi K, Takahashi Y K, Hono K2006 Appl. Phys. Lett. 88 63117.
  • 8ZhaoZ L, Chen J S, Ding J, Yi J B, Liu B H, Wang J P 2006 Appl. Phys. Lett. 88 52503.
  • 9Zhang Y, Wan J, Skumryev V, Stoyanov S, Huang Y, Hadjipanayis G C, Weller D 2004 Appl. Phys. Lett. 85 5343.
  • 10Shima T, Takanashi K, Takahashi Y K, Hono K 2004 Appl. Phys. Lett. 85 2571.

同被引文献20

  • 1竺云,蔡建旺.[(Fe/Pt/Fe)/Ag]_n多层膜低温合成分离的L1_0相FePt纳米颗粒[J].物理学报,2005,54(1):393-396. 被引量:11
  • 2Wood R 2000 IEEE Tran. Magn. 36 36
  • 3Sun S H, Murray C B, Weller D, Folks L, Moser A 2000 Science 287 1989
  • 4Kuo G M, Kuo P C, Wu H C, Yao Y D, Lin C H 1999 J. Appl. Phys. 85 4886
  • 5Endo Y, Kikuchi N, Kitakami O, Shimada Y 2001 J. Appl. Phys. 89 7065
  • 6Xu Y F, Chert J S, Wang J P 2002 Appl. Phys. Lett. 80 3325
  • 7Hsu Y N, Jeong S, Laughlin D E, Lambeth D N 2001 J. Appl. Phys. 89 7068
  • 8Yan Q Y, Kim T Y, Purkayastha A, Ganesan P G, Shima M, Ramanath G 2005 Adv. Mater. 17 2233
  • 9Feng C, Li B H, Han G, Teng J, Jiang Y, Liu Q L, Yu G H 2006 Appl. Phys. Lett. 88 232109
  • 10Zhou Y Z, Chen J S, Chow G M, Wang J P 2004 J. Appl. Phys. 7495

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部