期刊文献+

提高检突发错误能力的LDPC码的构造方法

Construction of LDPC codes for higher burst-error detecting
在线阅读 下载PDF
导出
摘要 当前LDPC码的构造方法都是偏重于提高码的性能、降低编码复杂度2个方面,没有考虑码组之间的汉明距离和汉明距离分布,从而漏检部分突发错误。给出了一种次优的考虑码组汉明距离分布的构造方法,和已有的方法相比,这种方法构造的LDPC码不仅可以检突发长度小于校验矩阵秩的突发错误,并且保持纠随机错误性能不变。 The coding of LDPC codes is focused on several aspects: high error-correction, low coding complexity and so on. All the construction methods do not give much consideration on hamming-distance and its distribution because of computation complexity. A suboptimal scheme which is with emphasis on hamming-distance and its distribution was presented. The codes introduced frown this scheme can detect all burst-errors within the length of check matrix's rank and has no loss in performance of random-error-correction.
出处 《通信学报》 EI CSCD 北大核心 2007年第11期111-115,共5页 Journal on Communications
关键词 LDPC码 Gilbert界 列相关 列主元高斯消去 LDPC codes Gilbert limit column-correlation column principle Gaussian elimination
作者简介 姚春光(1975-),男,山东苍山人,国防科技大学博士生,主要研究方向为卫星通信系统、信道编码技术和信道估计等。 葛新(1972-),女,江苏连云港人,硕士,中国电子设备系统工程总公司工程师,主要研究方向为卫星通信、无线电频谱管理等。 刘英男(1973-),男,黑龙江齐齐哈尔人,北京大学博士生,主要研究方向为无线通信、宽带通信中的关键技术。 张健(1964-),男,河北衡水人,中国电子设备系统工程总公司高级工程师,主要研究方向为卫星通信、光通信和短波通信。
  • 相关文献

参考文献10

  • 1GALLAGER R G, Low-density parity-check codes [J]. IRE Trans Inform Theory, 1962, (1):21-28,
  • 2贺玉成,杨莉,慕建君,王新梅.LDPC码的不可检测译码错误分析[J].通信学报,2002,23(1):1-7. 被引量:6
  • 3ELEFTHERIO U, HU X Y, ARNOLD D M. Progressive edge-growth Tanner graphs[A]. GLOBECOM '01.IEEE.[C]. 2001, 995-1001.
  • 4CAMPELLO J, MODHA D S, RAJAGOPALAN S. Designing LDPC codes using bit-filling[A], IEEE. International Conference on Communications[C]. 2001.55-59.
  • 5CAMPELLO J, MODHA D S. Extended bit-filling and LDPC code design[J]. IEEE Global Telecommunications Conference, 2001, 2(1):985-989.
  • 6KOU Y, LIN S, FOSSORIER M. Low-density parity-check codes based on finite geometries: a rediscovery and new results [J]. IEEE Trans Inform Theory, 2001,47(7):2711-2736.
  • 7VASIC B, PEDAGANI K, IVKOVIC M. High-rate girth-eight low-density parity-check codes on rectangular integer lattices[J]. IEEE Transactions on Communications, 2004, 52(8): 248-1252.
  • 8AMMAR B, HONARY B, KOU Y, et al. Construction of low-density parity-check codes based on balanced incomplete block designs[J]. IEEE Transactions on Information Theory, 2004, 50(6): 1257-1268.
  • 9JOHNSON S J, WELLER S R. Codes for iterative decoding from partial geometries[J]. IEEE Transactions on Communications, 2004, 52(2): 236-243.
  • 10HU X Y,ELEFTHERIOUE,DIETER M A.Irregular progressive edge-growth Tanner graphs[J].IEEE Trans Inf Theory,2005, 51(1): 386-398.

二级参考文献6

  • 1[1]Gallager R G. Low density parity check codes [J]. IRE Trans on IT, 1962, 8(1): 21-28.
  • 2[2]Mackay D. Good error-correcting codes based on very sparse matrices [J]. IEEE Trans on IT, 1999, 45(2): 399-431.
  • 3[3]McEliece R J, Mackay D, Cheng J F. Turbo decoding as an instance of pearl's belief propagation algorithm [J]. IEEE J SAC, 1998, 16(2): 140-152.
  • 4[4]Davey M, MacKay D. Low density parity check codes over GF(q) [J]. IEEE Communications Letters, 1998, 2(6): 165-167.
  • 5[5]Richardson T, Urbanke R. The capacity of low-density parity check codes under message-passing decoding [J]. IEEE Trans on IT, 2001, 47(2): 599-618.
  • 6[6]Lin S, Costello D J. Error Control Coding: Fundamentals and Applications [M]. Englewood Cliffs, NJ: Prentice-Hall, 1983.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部