期刊文献+

一种自适应最大最小蚁群算法 被引量:14

An Adaptive Max-Min Ant Colony Algorithm
原文传递
导出
摘要 介绍蚁群算法结构、原理,分析其优点和不足,回顾它的几个重要的改进模型.为了改进它的不足.在最大最小蚂蚁系统的基础上,提出一种自适应改进模型.对其权重系数、状态转移规则及信息素增量方式等进行改进,实现自适应调整,提高算法性能.为了验证改进算法的性能,进行数值实验,结果显示本文所提改进算法的有效性. The structure and principle of ant colony algorithm are introduced. Its excellence and deficiency are analyzed, and several important improved models are reviewed. Based on Max-Min Ant Systems (MMAS), an adaptive improved model is put forward. To achieve adaptive adjustment of parameters and enhance the performance of the proposed algorithm, the weighting coefficient, state transferring rule and pheromone increment mode are improved. To testify the performance of the improved algorithm, numerical experiment is made and the result shows the improved algorithm is effective.
作者 苏畅 徒君
出处 《模式识别与人工智能》 EI CSCD 北大核心 2007年第5期688-691,共4页 Pattern Recognition and Artificial Intelligence
关键词 蚁群算法 最大最小蚂蚁系统(MMAS) 自适应 旅行商问题 Ant Colony Algorithm, Max-Min Ant System (MMAS), Adaptive, Traveling Salesman Problem
作者简介 苏畅,女,1981年生,硕士,主要研究方向为智能控制.E-mail:tovegar@yahoo.com.cn. 徒君,男,1982年生,硕士,主要研究方向为智能算法.
  • 相关文献

参考文献11

  • 1Dorigo M, Maniezzo V, Colorni A. Positive Feedback as a Search Strategy. Technical Report, 91-016, Politecnico di Milano, Italy: University of Padova. Department of Information En gineering, 1991.
  • 2Dorigo M, Gambardella L M. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Trans on Evolutionary Computation, 1997, 1(1) : 53-66.
  • 3Stutzle T, Hoos H H. Max-Min Ant System. Journal of Future Generation Computer Systems, 2000, 16 (9): 889-914.
  • 4张纪会,徐心和.一种新的进化算法——蚁群算法[J].系统工程理论与实践,1999,19(3):84-87. 被引量:125
  • 5王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 6Watanabe I, Matsui S. Improving the Performance of ACO Algorithms by Adaptive Control of Candidate Set // Proc of the Congress on Evolutionary Computation. Newport Beach, USA, 2003, Ⅱ: 1355-1362.
  • 7I.u Yong, Zhao Guangzhou, Su Fanjun. Adaptive Ant-Based Dynamic Routing Algorithm// Proc of the 5th World Congress on Intelligent Control and Automation. Hangzhou, China, 2004, Ⅲ : 2694-2697.
  • 8Ngo S H, Jiang Xiaohong, Horiguchi S. Adaptive Routing and Wavelength Assignment Using Ant-Based Algorithm // Proc of the IEEE International Conference on Networks. Singapore, Singapore, 2004: 482-486.
  • 9覃刚力,杨家本.自适应调整信息素的蚁群算法[J].信息与控制,2002,31(3):198-201. 被引量:109
  • 10高尚,韩斌,吴小俊,杨静宇.求解旅行商问题的混合粒子群优化算法[J].控制与决策,2004,19(11):1286-1289. 被引量:74

二级参考文献14

  • 1Dofigo M,Maniezzo V,Colomi A.Ant System:Optimization by a colony of cooperating Agents[J],IEEE Trans on systems,Man and Cybernetics, 1996;26( 1 ) :28-41.
  • 2Gutijahr W J,Agraph-Based Ant system and Its convergence[J].Future Generation Computer Systems,2000; 16 : 873-888.
  • 3Chen M Set al,Data mining:An overview from a database perspective[J],IEEE Trans on Knowledge and data engineering,1996;8(6): 866-883.
  • 4Selim S Z,Ismail M A,K-Means-Type Algorithms:A generalized convergenee theorem and characterization of local optimality[J],IEEE Trans Pattern analysis and machine intelligenee, 1984;PAMI-6( 1 ) :81-87.
  • 5Maulik U, Bandyopadhyay S.Genetic algorithm-based clustering technique[J],Pattern recognition,2000;33(9) : 1455-1465.
  • 6Dorigo M,Optimization,Learning,and Natural Algorithms[D].Ph,D,Thesis, Dipartimento di Elettroniea,Politeenieo diMiLano,haly, 1992.
  • 7Eberhart R C, Kennedy J. A new optimizer using particles swarm theory[A]. Proc Sixth Int Symposium on Micro Machine and Human Science[C]. Nagoya,1995.39-43.
  • 8Shi Y H, Eberhart R C. A modified particle swarm optimizer [A]. IEEE Int Conf on Evolutionary Computation[C]. Anchorage, 1998. 69-73.
  • 9Maurice Clerc. Discrete particle swarm optimization illustrated by the traveling salesman problem [DB].http://www. mauriceclerc. net, 2000.
  • 10Dorigo M, Maniezzo Vittorio, Colorni Alberto. The Ant System: Optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics--Part B,1996, 26(1): 1-13.

共引文献507

同被引文献185

引证文献14

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部