期刊文献+

求解多目标优化问题的一种多子群体进化算法 被引量:16

A multiple subswarms evolutionary algorithm for multi-objective optimization problems
在线阅读 下载PDF
导出
摘要 提出一种新的多目标粒子群优化(MOPSO)算法.根据多目标优化问题(MOP)的特点,将一个进化群体分成若干个子群体,利用非劣支配的概念构造全局最优区域,用以指导整个粒子群的进化.通过子群体间的信息交换,使整个群体分布更均匀,并且避免了局部最优,保证了解的多样性,通过很少的迭代次数便可得到分布均匀的Pareto有效解集.数值实验表明了该算法的有效性. A new MOPSO algorithm is proposed, which divides a evolutionary swarm into several subswarms based on trait of MOP and uses Pareto dominance concepts to construct the globally optimal region. The region guides the evolutionary of whole particle swarm, By the exchange informations among the particles, the whole particle swarm distributes uniformly and avoides local optimum, and the diversity of the solution is ensured, The uniformly distributed Pareto optimal set is obtained by a few iterations, Numerical simulations show the effectiveness of the proposed algorithm.
出处 《控制与决策》 EI CSCD 北大核心 2007年第11期1313-1316,1320,共5页 Control and Decision
基金 国家自然科学基金重点项目(60433020 60673099) 教育部"符号计算与知识工程"重点实验室项目(02090) 国家985工程项目
关键词 多目标优化 粒子群优化算法 非劣最优解 Multi-objective optimization Particle swarm optimization Pareto optimal solution
作者简介 张利彪(1973-),男,内蒙古固阳人,博士,从事计算智能和图像处理的研究; 周春光(1949-),男,长春人,教授.博士生导师,从事计算智能、模式识别等研究.Correspondent: ZHOU Chun-guang, E-mail: cgzhou@jlu. edu. cn
  • 相关文献

参考文献7

  • 1Kennedy J,Eberhart R.Particle swarm optimization[C].IEEE Int Conf on Neural Networks.Piscataway,1995:1942-1948.
  • 2Fieldsend J,Singh S.A multi-objective algorithm based upon particle swarm optimization,an efficient data structure and turbulence[C].Proc of UK Workshop on Computational Intelligence.Birmingham,2002:37-44.
  • 3Coello C A,Lechuga M S.MOPSO:A proposal for multiple objective particle swarm optimization[C].Proc of the IEEE Congress on Evolutionary Computation.Honolulu,2002:1051-1056.
  • 4Parsopoulos K E,Vrahatis M N.Particle swarm optimization method in multiobjective problems[C].Proc of the ACM Symposium on Applied Computing.New York:ACM Press,2002:603-607.
  • 5Hu X,Eberhart R C.Multiobjective optimization using dynamic neighborhood particle swarm optimization[C].Proc of the IEEE Congress on Evolutionary Computation.Honolulu,2002:1677-1681.
  • 6Joanna L,Eiben A E.A multi-sexual genetic algorithm for multiobjective optimization[C].Proc of the 1996 Int Conf on Evolutionary Computation.Nagoya,1996:59-64.
  • 7Zitzler E,Deb K,Thiele L.Comparison of multiobjective evolutionary algorithms:Empirical results[R].Zurich:Swiss Federal Institute of Technology,1999.

同被引文献269

引证文献16

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部