期刊文献+

变系数线性系统谱的新不等式及其对部分变元稳定性的应用 被引量:2

A New Spectral Inequality and Its Applications to Partial Stability of Linear Time-Varying Systems
在线阅读 下载PDF
导出
摘要 本文利用一个非二次型李雅普诺夫函数,对变系数线性系统给出了一个新的谱不等式.不同于Wazewski不等式,我们避免了需要计算时变矩阵特征值的困难.然后我们利用新的谱不等式,讨论了变系数线性系统对部分变元的指数稳定性,得到了更实用的结果. In this paper, by using a non-quadratic Lyapunov function, we prove a new spectral inequality for linear time-varying systems with possibly unbounded coefficients. Unlike Wazewski's inequality,we do not require the calculation of eigenvalues for time-dependent matrices. The new spectral estimate is then applied to study the partial exponential stability problem of linear time-varying systems and several practical results are obtained.
作者 郭韵霞
出处 《应用数学》 CSCD 北大核心 2007年第4期814-819,共6页 Mathematica Applicata
关键词 变系数线性系统 谱估计 部分变元的稳定性 Linear time-varying systems Spectral estimate Partial stability
作者简介 郭韵霞,女,汉,河南人,副教授,硕士,研究方向:微分方程稳定性.
  • 相关文献

参考文献8

  • 1Amato F.Robust Control of Linear Systems Subject to Uncertain Time-varying Parameters,Lecture Notes in Control and Information Sciences[M].Berlin:Springer-Verlag,2006.
  • 2DAngelo H.Linear Time-Varying Systems:Analysis and Synthesis[M].Boston:Allyn and Bacon,1970.
  • 3秦元勋,王联,王慕秋.运动稳定性理论与应用,纯粹数学与应用数学专著,第八号[M].北京:科学出版社,1981.
  • 4廖晓昕,吴卫华.THE NECESSARY AND SUFFICIENT CONDITIONS OF PARTIAL STABILITY FOR LINEAR DYNAMICAL SYSTEMS[J].Chinese Science Bulletin,1990,35(11):899-903. 被引量:1
  • 5郭韵霞.常微分方程部分变元的稳定性[D].华中师范大学硕士学位论文,2002.
  • 6郭韵霞.线性时变动力系统关于部分变元稳定准则[J].武汉工业大学学报,1992,14(1):124-129. 被引量:3
  • 7Guo Yunxia.Partial stability for nonlinear time varying dynamical systems[J].Ann.Diff.Equs,1992,8(3):276-283.
  • 8Reissing R,Sansone G,Conti R.Nonlinear Differential Equation of Higher Order[M].New York:Nwrdhoff International Publishing Legder,1974.

共引文献2

同被引文献16

  • 1廖晓昕.STABILITY, BOUNDEDNESS, DISSIPATION OF PARTIAL VARIABLES FOR NONLINEAR SYSTEMS WITH SEPARATING VARIABLES[J].Science China Mathematics,1992,35(9):1025-1039. 被引量:4
  • 2HALE J K, VERDUYN L S M. Introduction to Functional Differential Equation [ M]. New York: Springer-verlag, 1993.
  • 3HALANAY A. Differential Equations: Stability, Oscillations, Time Lags [ M ]. New York: Academic Press, 1966.
  • 4CAO Jin-de, LIANG Jin-ling. Boundedness and Stability for Cohen-Grossberg Neural Network with Time-varying Delays [J]. J Math Anal Appl, 2004,296 : 665-685.
  • 5JIANG Ming-hui,SHEN Yi, LIAO Xiao-xin. On the Global Exponen.tial Stability for Functional Differential Equations [J]. Communications in Nonlinear Science and Numerical Simulations,2005,10 : 705-713.
  • 6LEHMAN B, SHUJAEE K. Delay Independent Stability Conditions and Decay Estimates for Time-varying Functional Differential Equations [J]. IEEE Trails Automat Contr, 1994,39(8) :1 673-1 676.
  • 7LIZ E,TROFIMCHUK S. Existence and Stability of Almost Periodic Solutions for Quasilinear Delay Systems and the Halanay Inequality [J]. J Math Anal Appl,2000,248:625-644.
  • 8IVANOV A, LIZ E,TROFIMCHUK S. Halanay Inequality, York 3/2 Stability Criterion,and Differential Equations with Maxima [J]. Tohoku Math J,2002,54 (2) : 277-295.
  • 9WANG Jin-zhi, DUAN Zhi-sheng, HUANG Lin. Control of a Class of Pendulum-like Systems with Lagrange Stability [J]. Automatica,2006,42:145-150.
  • 10CHEN Mao-yin. Synchronization in Time-varying Networks: A Matrix Measure Approach [ J ]. Physical Review E, 2007,76 : 016104.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部