期刊文献+

基于粗糙集和模糊聚类的新闻视频镜头边界检测方法 被引量:8

A Shot Boundary Detection Method for News Video Based on Rough Sets and Fuzzy Clustering
在线阅读 下载PDF
导出
摘要 为了将视频分割成镜头,目前的方法都是提取某些特征然后构造不同的相异性函数。然而,太多的特征就会降低镜头分割算法的效率。因此,有必要对每一个镜头检测决策进行特征约简。基于此,提出了基于粗糙集和模糊聚类的分类方法并得到了相应的决策规则。针对新闻场景的特殊性,将镜头分割成突变过渡、渐变过渡以及无场景变化3类。用超过2个小时的新闻视频所做的实验获得了96.5%的查全率和97.9%的准确率。 As a crucial step in the content-based news video indexing and retrieval system, shot boundary detection attracts much more research interests in recent years. To partition news video into shots, many metrics were constructed to measure the similarity among video frames based on all the available video features. However, too many features will reduce the efficiency of the shot boundary detection. Therefore, it is necessary to perform feature reduction for every decision of the shot boundary. For this purpose, the classification method based on rough sets and fuzzy c-means clustering for feature reduction and rule generation is proposed. According to the particularity of news scenes, shot transition can be divided into three types: cut transition, gradual transition and no transition. The efficacy of the proposed method is extensively tested with news programs over 2 hours and 96.5% recall with 97.9% precision have been achieved.
出处 《中国图象图形学报》 CSCD 北大核心 2007年第3期522-528,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(60202004) 教育部重点项目(104173)
关键词 镜头边界检测 粗糙集 模糊聚类 shot boundary detection, rough set, fuzzy clustering
作者简介 韩冰(1978~),女.现为西安电子科技大学模式识别专业博士研究生.主要研究方向为视频检索、模式识别等.已发表论文10余篇.E-mail:bhan@xidian.edu.cn
  • 相关文献

参考文献12

  • 1John S Boreczky,Lawrence A Rowe.Comparison of video shot boundary detection techniques[A].In:SPIE Conference of Storage & Retrieval for Image & Video Databases[C],San Jose,California,USA,1996:170-179.
  • 2Gargi U,Kasturi R,Strayer S H.Performance characterization of video-shot-change detection methods[J].IEEE Transactions on Circuits and Systems for Video Technology,2000,10(1):1 - 13.
  • 3Ford R M,Robson C,Temple D,et al.Metrics for shot boundary detection in digital video sequences[J].Multimedia System,2000,8(1):37 -46.
  • 4Pawlak Z.Rough Set[J].International Journal of Computer and Information Science,1982,11(5):341 -356.
  • 5Pawlak Z.Vagueness and uncertainty:a rough set perspective[J].International Journal of Computational Intelligence,1995,11 (2):227 - 232.
  • 6Wang Guo-yin,Zhao Jun,An Jiu-jiang,et al.Theoretical study on attribute reduction of rough set theory:comparison of algebra and information views[A].In:Proceedings of the Third IEEE International Conference on Cognitive Informatics[C],Victoria,British Columbia,Canada,2004:148 - 155.
  • 7Gao Xin-bo,Tang Xiao-ou.Unsupervised model-free news video segmentation[J].IEEE Transactions on Circuits and Systems for Video Technology,2002,12 (9):765 - 776.
  • 8Han Bing,Gao Xin-bo,Ji Hong-bing.An efficient algorithm of gradual transition for shot boundary segmentation[A].In:SPIE Conference on Multispectral Image Processing and Pattern Recognition[C],Beijing,China,2003:956 - 961.
  • 9刘岩,岳应娟,李言俊,张科.基于粗糙集的图像聚类分割方法研究[J].红外与激光工程,2004,33(3):300-302. 被引量:10
  • 10石红,沈毅,刘志言.基于粗糙集和模糊聚类的超谱波段约简[J].电子与信息学报,2004,26(4):619-624. 被引量:1

二级参考文献21

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2曾黄麟.粗糙集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 3章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 4Jia Xiuping, Richards J A. Segmented principal componemts transformation for efficient hyperspectral remote-sensing image display and classification. IEEE Trans. on Geoscience and Remote Sensing, 1999, GRS-37(1): 538-542.
  • 5Zhang Ye, Desai M D, Zhang Junping, et al.. Adaptive subspace decomposition for hyperspectral data dimensionality reduction. International Conference on Image Processing (ICIP99'), Kobe,Japan, 1999: 326-329.
  • 6Tu Te-Ming, Chen Chin-Hsing. A fast two stage classification method for high dimensional remote sensing data. IEEE Trans. on Geoscience and Remote Sensing, 1998, GRS-36(1): 182-191.
  • 7Morgan J T, Henneguelle A, Crawford M M, et al.. Best bases Bayesian hierarchical classifier for hyperspectral data analysis. Geoscience and Remote Sensing Symposium, IGARSS'02, Toronto,Canada, 2002 IEEE International, 2002, Vol.3: 1434-1437.
  • 8Esposito P G, Bartoloni A. An application of genetic algorithms to the geometric correction of HypSEO hyperspectral data. Geoscience and Remote Sensing Symposium, IGARSS'02, Toronto,Canada, 2002 IEEE International, 2002, Vol.6: 3507-3509.
  • 9Kaewpijit S, Le Moigne J, E1-Ghazawi T. A wavelet-based PCA reduction for hyperspectral imagery. Geoscience and Remote Sensing Symposium, IGARSS'02, Toronto, Canada, 2002 IEEE International, 2002, Vol.5: 2581-2583.
  • 10Hsu Pai-Hui, Tseng Yi-Hsing. Feature extraction of hyperspectral data using the best wavelet packet basis. Geoscience and Remote Sensing Symposium, IGARSS'02, Toronto, Canada, 2002 IEEE International, 2002, Vol.3: 1667-1669.

共引文献9

同被引文献93

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部