期刊文献+

Growth and Characterization of A1GaN/A1N/GaN HEMT Structures with a Compositionally Step-Graded A1GaN Barrier Layer 被引量:2

Growth and Characterization of A1GaN/A1N/GaN HEMT Structures with a Compositionally Step-Graded A1GaN Barrier Layer
在线阅读 下载PDF
导出
摘要 A new A1GaN/A1N/GaN high electron mobility transistor (HEMT) structure using a compositionally step-graded A1GaN barrier layer is grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The structure demonstrates significant enhancement of two-dimensional electron gas (2DEG) mobility and smooth surface morphology compared with the conventional HEMT structure with high A1 composition A1GaN barrier. The high 2DEG mobility of 1806 cm2/Vs at room temperature and low rms surface roughness of 0.220 nm for a scan area of 5μm×5 μm are attributed to the improvement of interracial and crystal quality by employing the stepgraded barrier to accommodate the large lattice mismatch stress. The 2DEG sheet density is independent of the measurement temperature, showing the excellent 2DEG confinement of the step-graded structure. A low average sheet resistance of 314.5Ω/square, with a good resistance uniformity of 0.68%, is also obtained across the 50 mm epilayer wafer. HEMT devices are successfully fabricated using this material structure, which exhibits a maximum extrinsic transconductance of 218 mS/ram and a maximum drain current density of 800 mA/mm. A new A1GaN/A1N/GaN high electron mobility transistor (HEMT) structure using a compositionally step-graded A1GaN barrier layer is grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The structure demonstrates significant enhancement of two-dimensional electron gas (2DEG) mobility and smooth surface morphology compared with the conventional HEMT structure with high A1 composition A1GaN barrier. The high 2DEG mobility of 1806 cm2/Vs at room temperature and low rms surface roughness of 0.220 nm for a scan area of 5μm×5 μm are attributed to the improvement of interracial and crystal quality by employing the stepgraded barrier to accommodate the large lattice mismatch stress. The 2DEG sheet density is independent of the measurement temperature, showing the excellent 2DEG confinement of the step-graded structure. A low average sheet resistance of 314.5Ω/square, with a good resistance uniformity of 0.68%, is also obtained across the 50 mm epilayer wafer. HEMT devices are successfully fabricated using this material structure, which exhibits a maximum extrinsic transconductance of 218 mS/ram and a maximum drain current density of 800 mA/mm.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2007年第6期1705-1708,共4页 中国物理快报(英文版)
基金 Supported by the Knowledge Innovation Project of Chinese Academy of Sciences (No KGCX2-SW-107-1), the National Natural Science Foundation of China under Grant No 60606002, the State Key Basic Research Programme of China under Grant Nos 2002CB311903, 2006CB604905, and 513270505.
作者简介 Email: mazhiyong@mail.semi.ac.cn
  • 相关文献

参考文献18

  • 1Asif Khan M, Bhattarai A, Kuznia J N and Olson D T 1993 Appl. Phys. Lett. 63 1214
  • 2Miyoshi M, Ishikawa H, Egawa T, Asai K, Mouri M, Shibata T, Tanaka M and Oda O 2004 Appl. Phys. Lett. 85 1710
  • 3Wang X L, Wang C M, Hu G X, Wang J X and Li J P 2006 Phys. Status Solidi C 3 607
  • 4Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron. Device Lett. 25 117
  • 5Wang X L, Hu G X, Ma Z Y, Ran J X, Wang C M, Xiao H L, Tang J and Li J P 2007 J. Crystal Growth 298 835
  • 6Miyoshi M, Arulkumaran S, Ishikawa H, Egawa T, Tanaka M and Oda O 2004 Jpn. J. Appl. Phys. 43 7939
  • 7Wang C M, Wang X L, Hu G X, Wang J X, Li J P and Wang Z G 2006 Appl. Surf. Sci. 253 762
  • 8Bougrioua Z, Moerman I, Nistor L, Van Daele B, Monroy E, Palacios T, Calle F and Leroux M 2003 Phys. Status Solidi A 195 93
  • 9Wang C M, Wang X L, Hu G X, Wang J X and Li J P 2006 Phys. Status Solidi C 3 486
  • 10Arulkumaran S, Egawa T, Ishikawa H and Jimbo T 2003 J. Vac. Sci. Technol. B 21 888

同被引文献5

  • 1Fabio B,Vincenzo F.Spontaneous Polarization and Piezoelectric Constants of III-V Nitrides[J].Physical Review B,1997,56(16):56-61.
  • 2Wang C M,Wang X L,Hu G X,et al.Influence of Al N Interfacial Layer on Electrical Properties of High-Al-content Al0.45Ga0.55N/Ga N HEMTStructure[J].Appl.Surf.Sci.,2006,253(2):762-765.
  • 3Ni J Y,Hao Y,Zhang J C,et al.Influence of High-Temperature Al N Interlayer on the Electrical Properties of Al Ga N/Ga N Heterostructure and HEMTs[J].Acta Phys.Sin,2009,58(7):4952-4930.
  • 4Wang X L,Hu G X,Wang C M,et al.MOCVD Grown High-Mobility Al Ga N/Al N/Ga N HEMT Structure on Sapphire Substrate[J].J.Cryst,Growth,2007,298(1):791-793.
  • 5Baishakhi M,Kaun S W,Lu J,et al.Atom Probe Analysis of Al N Interlayers in Al Ga N/Al N/Ga N Heterostructures[J].Appl.Phys.Lett.,2013,102(11):111603.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部