期刊文献+

传热结构的多目标拓扑优化设计研究 被引量:11

Study on multiple objective topology optimization of thermal conductive structure
在线阅读 下载PDF
导出
摘要 深入分析了传热结构多目标拓扑优化设计中的几个关键问题。提出了基于结构柔度最小化和结构散热弱度最小化的多目标拓扑优化设计方法,建立了传热结构的多目标拓扑优化设计模型,推导了传热结构多目标拓扑优化中用于迭代分析求解的优化准则算法和敏度分析方程。通过数值计算验证了理论和算法的有效性。  A new idea to design the optimal heat conductive body with topology optimization method is proposed in this paper.Some important subjects,such as,material interpolation schemes,optimal mathematical model,sensitivity analysis method and optimizer fit for multi-objective topology design of heat conductive structure are deeply discussed.A multiple objective topology optimization method based on minimizing structure's compliance and optimal thermal conduction efficiency is proposed and the corresponding topology optimization model is established.An optimization criteria algorithm on the basis of SIMP(solid isotropic material with penalization model) material interpolation scheme,which is used for updating the design variable,is deduced from the Lagrange function in this paper.The corresponding sensitivity analysis equations for single objective and multi-objective are also deduced.Two numerical examples verified the effectiveness of methods and algorithms proposed in this paper.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2007年第5期620-627,共8页 Chinese Journal of Computational Mechanics
基金 中国博士后科学基金(2005037347) 国家"973"重点基础研究发展规划(2003CB716207)资助项目
关键词 最优结构设计 多目标优化 拓扑优化 优化准则算法 传热结构 optimal structural design multi-objective optimization topology optimization optimization criteria algorithm thermal conductive structure
作者简介 左孔天(1973-),男,博士后(E—mail:zuokt@mail.tsinghua.edu.cn); 赵雨东(1966-),男,博士,副教授; 陈立平(1964-),男,博士,教授.
  • 相关文献

参考文献12

  • 1BEHROOZ HASSANI, ERNEST HINTON. Homogenization and Structural Topology Optimization [M]. London, 1999.
  • 2BENDSOE M P,SIGMUND O. Topology Optimization: Theory, Methods and Applications [M]. New York, 2003.
  • 3左孔天,陈立平,张云清,王书亭.用拓扑优化方法进行热传导散热体的结构优化设计[J].机械工程学报,2005,41(4):13-16. 被引量:42
  • 4SIGMUND O. Systematic design of electrothermomechanical microactuators using topology optimization[A]. Modelling and Simulation of Microsystems [ C ]. Semiconductors, Sensors and Actuators, MSM98, California, 1998.
  • 5JONSMANN J. Technology development for topology optimized thermal microactuators[D]. Lyngby: Technical University of Denmark, 1999.
  • 6SIGMUND O. Design of material structures using topology optimization [D].Technical University of Denmark, 1994.
  • 7BENDSOE M P and SIGMUND O. Material interpolation schemes in topology optimization[J]. Archive Applied Mechanics, 1999,69 : 635-654.
  • 8左孔天,陈立平,钟毅芳,王书亭,张云清.基于人工材料密度的新型拓扑优化理论和算法研究[J].机械工程学报,2004,40(12):31-37. 被引量:64
  • 9SVANBERG K. The method of moving asymptotes a new method for structural optimization[J].International Journal for Numerical Methods in Engineering, 1987,24 : 359-373.
  • 10SVANBERG K. A new globally convergent version of the method of moving asymptotes[RJ. Royal Institute of Technology, Stockholm, ISSN 0348-405X, 1999.

二级参考文献41

  • 1左孔天,陈立平,钟毅芳,王书亭,张云清.基于人工材料密度的新型拓扑优化理论和算法研究[J].机械工程学报,2004,40(12):31-37. 被引量:64
  • 2Bendsoe M, Kikuehi N Generating optimal topologies in structural design using a homogenization method [ J ]. Computer Methods in Applied Mechanics and Engineering, 1988,71.
  • 3Mlejnek H P, Sehirrmaeher R An engineering approach to optimal material distribution and shape finding [ J ]. Computer Methods in Applied Mechanics and Engineering, 1993,106.
  • 4Sigmund O Design of Material Structures Using Topology Optimization[ D]. PhD thesis, Department of Solid Mechanics, Technical University of Denmark, 1994.
  • 5Sigmund O Materials with prescribed constitutive parameters:an inverse homogenization problem [ J ]. International Journal of Solids Structures, 1994,31 ( 17 ) :2313-2329.
  • 6Diaz A, Sigmund O Checkerboard patterns in layout optimization[ J]. Structural Optimization, 1995,10:40-45.
  • 7Haber R B, Jog C S, Bendsoe M P A new approach to variable-topology shape design using a constraint on perimeter [J].Structural Optimization, 1996, 11 :1- 12.
  • 8Sigmund O, Petersson J Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards,mesh-dependencies and local minima[J]. Structural Opthnization, 1998,16:68-75.
  • 9Petersson J, Sigmund O Slope constrained topology optimization[J]. International Journal for Numerical Method in Engineering, 1998,41:1417 - 1434.
  • 10Zhou M, Shyy Y K, Thomas H L Checkerboard and minimum member size control in topology optimization [ J]. Struct Muitidisc Optim, 2001,21 : 152 - 158.

共引文献114

同被引文献55

引证文献11

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部