期刊文献+

Existence and Nonexistence of the Global Solution on the Quasilinear Parabolic Equation 被引量:1

拟线性抛物方程整体解的存在性和不存在性(英文)
在线阅读 下载PDF
导出
摘要 The paper studies the existence, the exponential decay and the nonexistence of global solution for a class of quasilinear parabolic equations.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第3期444-450,共7页 数学季刊(英文版)
基金 the National Natural Science Foundation of China(10371111) the Natural Science Foundation of Henan Province(0611053300)
关键词 quasilinear parabolic equation global existence exponential decay BLOW-UP 拟线性抛物方程 整体解 存在性 不存在性
作者简介 PANG Jin-sheng(1956- ), male, native of Shangqiu, Henan, an associate professor of Shangqiu Vocational and Technical College, engages in advances mathematics and partial differential equation
  • 相关文献

参考文献20

  • 1BALL J.Remarks on blow-up and nonexistence theorems for nonlinear evolution equation[J].Quart J Math Oxford Ser,1977,28(2):473-486.
  • 2FUJITA H.On the blowing up of solution of the Cauchy problem for ut = △u + u1+a[J].J Fac Sci Univ Tokyo Sect IA Math,1966,13:109-124.
  • 3LEVINE H A.Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put = -Au + F(u)[J].Arch Rational Mech Anal,1973,51:371-386.
  • 4TSUTSUM M.Existence and nonexistence of global solutions for nonlinear parabolic equations[J].Pull Res Inst Math Sci,1972,8:211-229.
  • 5SAMARSKII A,GALAKTIONOV V,KURDYUMOV S,MIKHAILOV A.Blow-up in Quasilinear Parabolic Equation,de Gruyter Expositions in Mathematics[M].Berlin:Walter de Gruyter and Co,1995.
  • 6PUCCI P,SERRIN J.Asymptotic Stability for Nonlinear Parabolic Systems[C].Kluwer:Dordrecht,1996,66-74.
  • 7PUCCI P,SERRIN J.Asymptotic stability for nonautonomous dissipative wave systems[J].Communications on Pure and Applied Mathematics,1996,49:177-216.
  • 8PUCCI P,SERRIN J.Stability and Blow-up for Dissipative Evolution Equation[C].In:Reaction-diffusion Systems(G Carirto,E Mitidieri,eds),Marcel Dekker,1997,299-316.
  • 9BOCUTO A,VITILLARO E.Asymptotic stability for abstract evolution equation and application to partial differential systems[J].Rend Circ Mat Palermo,1998,47:25-48.
  • 10SERRIN J.G.Todorova,E.Vitillaro,Existence for a nonlinear wave equation with damping and source terms[J].Diff Integ Equa,2003,16:13-50.

二级参考文献13

  • 1Love A H. A Treatise on the Mathematical Theory of Elasticity. New York: Dover, 1964
  • 2Ferreira J, Larkin N A. Global solvability of a mixed problem for a nonlinear hyperbolic-parabolic equation in noncylindrical domains. Portugaliae Math, 1996, 53(3): 381-395
  • 3Wang Shubin, Chen Guowang. Existence and nonexistence of global solutions for nonlinear hyperbolic equation of higher order. Comment. Math Univ Carolinae, 1995, 36(3): 475-487
  • 4Webb G. Existence and asymptotic behavior for a strongly damped nonlinear wave equation. Canad J Math,1980,32(3): 631-643
  • 5Pucci P, Serrin J. Asymptotic stability for nonautonomous dissipative wave equation. Comm Pure Appl Math,1996, 49(2): 177-216
  • 6Nakao M. A difference inequality and its application to nonlinear evolution equation. J Math Soc Japan, 1978, 30(4): 747-762
  • 7Levine H A, Serrin J. Global nonexistence theorems for quasilinear evolution equations with dissipation. Arch Rational Mech Anal, 1997, 137(3): 341-361
  • 8Levine H A, Pucci P, Serrins J. Some remarks on global nonexistence for nonautonomous abstract evolution equations. Colorado: Contemporary Mathematics, 1997. 253-263
  • 9Sattinger D H. On global solutions of nonlinear hyperbolic equation. Arch Rational Mech Anal, 1968, 30(2): 148-172
  • 10Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations. Israel J Math, 1975,22(3): 273-303

共引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部