摘要
目的:去除在心电信号采集过程中混入的肌电干扰、工频干扰、基线漂移等噪声信号,避免噪声对心电信号特征点的识别和提取造成误判和漏判。方法:首先利用coif4小波对心电信号按Mallat算法进行分解,然后采用软、硬阈值折衷与小波重构的算法进行去噪。结果:采用MIT/BIH Arrhythmia Database中的心电信号进行仿真、验证,有效去除了三种常见的噪声信号。结论:本方法实时性好,为临床分析与诊断奠定了基础。
Objective: In oder to avoid the wrong identification from the characteristics of ECG signals, to remove the electromyo- graphical interference (EMG), powerline interference and baseline-drift existing in the course of collecting ECG signal data were removed importantly. Methods: Firstly, based on the Mallat algorithm, the ECG signals was decomposed through the coif4 wavelet. Secondly, the denoising algorithm of tradeoff of soft-and-hard thresholding and the wavelet reconstruction algorithm were used to remove the main noise. Results: The MIT/BIH arrhythmia database was used, which proved that the algorithm could effectively remove the noise. Conclusions: This algorithm is suitable for real-time analysis, and lays a good basis for the clinical analysis and diagnosis.
出处
《现代生物医学进展》
CAS
2007年第10期1566-1568,共3页
Progress in Modern Biomedicine
关键词
小波变换
心电信号
工频干扰
肌电干扰
基线漂移
Wavelet
ECG signal processing
Powerline interference
Electromyographical interference
Baseline-drift
作者简介
赵晴,(1983-),女,硕士研究生,主要研究方向:生物医学信号处理。Email:qinger802@126.com,地址:山东省济南市文化东路88号,250014。