期刊文献+

含碳纳米管悬浮液的稳定性 被引量:13

Stability of Aqueous Suspension Containing Carbon Nanotubes
在线阅读 下载PDF
导出
摘要 在水中加入碳纳米管制备了含碳纳米管悬浮液(纳米流体),研究了几种典型类型的表面活性剂:十二烷基苯磺酸钠(SDBS)、十六烷基三甲基溴化铵(HTAB)及乳化剂OP对纳米流体稳定性的影响,通过静置和离心分离等手段研究了其稳定性,并采用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对样品的形貌进行了表征.结果显示,未加表面活性剂时碳纳米管不能均匀地分散到水中,而添加了表面活性剂的纳米流体的稳定性大幅度提高,能够稳定存在数月,而且表面活性剂质量浓度存在一个最佳值,此时纳米流体的稳定性最好.在3种表面活性剂中非离子型表面活性剂乳化剂OP作为分散剂时碳管纳米流体的稳定性最好. A suspension of carbon nanotubes as a nanofluids was prepared by dispersing carbon nanotubes into deionized water. The effects of several typical kinds of surfactants such as sodium dodecyl benzene sulfonate ( SDBS ), hexadecyl trimethyl ammonium bromide (HTAB) and emulsifying agent OP on the stability of the nanofluid were studied by stationary and centrifugal tests with sample morphologies characterized by SEM and TEM. The results showed that the carbon nanotubes can not be dispersed homogeneously in water without surfactant, but the stability of the nanofluid in which a surfactant has been added is enhanced significantly and then it can be kept up for ,several months. There is a best concentration of surfactant to make the stability optimal, and a best stability is available if using OP as surfactant.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第10期1438-1441,共4页 Journal of Northeastern University(Natural Science)
基金 河北省自然科学基金资助项目(E2006000355) 河北省教育厅基金资助项目(2004318)
关键词 纳米流体 碳纳米管 强化传热 稳定性 表面活性剂 nanofluid carbon nanotubes enhanced heat transfer stability surfactant
作者简介 郝素菊(1966-),女,河北石家庄人.东北大学博士研究生,河北理工大学副教授; 张玉柱(1956-).男,河北沧州人,河北理工大学教授,东北大学博士生导师.
  • 相关文献

参考文献9

  • 1Stepen U S. Enhancing thermal conductivity of fluids with nanoparticles[J]. American Society of Mechanical Engineers, Fluids Engineering Division ,1995, 231:99-105.
  • 2郝素菊,蒋武锋,张玉柱.纳米流体——一种强化换热工质[J].冶金能源,2006,25(3):36-38. 被引量:3
  • 3李强,宣益民.纳米流体热导率的测量[J].化工学报,2003,54(1):42-46. 被引量:50
  • 4Lee S, Choi S U, Li S, et al. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. ASME Journal Heat Transfer, 1999,121(5):280 -289.
  • 5Eastman J A. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles[J]. Applied Physics Letter, 2001,78:718-720.
  • 6Xuan Y. Heat transfer enhancement of nanofluids [J]. International Journal of Heat and Fluid, 2000,21:58-64.
  • 7Xie H Q, Thermal conductivity entrancement of suspensions containing nanosized alumina particles[J]. Journal of Applied Physics, 2002,91:4568-4572.
  • 8Che J W. Thermal conductivity of carbon nanotubes [J], Nanotechnology, 2000,11 (2):65-69.
  • 9Berber S. Unusually high thermal conductivity of carbon nanotubes [J]. Physical Review Letters, 2000,84(20):4613-4616.

二级参考文献10

  • 1[1]Eastman J A,Choi U S,Li S,Thompson L J,Lee S.Enhanced Thermal Conductivity Through the Development of Nanofluids.In: Komarneni S,Parker J C,Wollenberger H J, eds. Proceedings of the Symposium on Nanophase and Nanocomposite Materials.Boston: Materials Research Society, Pittsburgh, PA, 1997. 3-11
  • 2[2]Xuan Y,Li Q.Heat Transfer Enhancement of Nanofluids.Int. J. of Heat and Fluid Flow, 2000, 21(1): 58-64
  • 3[3]Lee S, Choi U S, Li S, Eastman J A. Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles.J. of Heat Transfer, 1999, 121: 280-289
  • 4[4]Eastman J A, Choi US, Li S. Development of Energy-efficient Nanofluids for Heat Transfer Applications.Report of Argonne National Laboratory
  • 5[5]Lee S,Choi U S.Application of Metallic Nanoparticle Suspensions in Advanced Cooling Systems.In: Kwon Y,Davis D,Chung H, eds. Recent Advances in Solids/Structures and Application of Metallic Materials.PVP-vol.342/MD-vol.72. New York: ASME, 1996.227-234
  • 6[6]Carslaw H S, Jaeger J C. Conduction of Heat in Solids.2nd ed. London: Oxford University Press, 1959. 510
  • 7[7]Maxwell J C. A Treatise on Electricity and Magnetism. 2nd ed. U K: Clarendon Press, 1881. 435
  • 8[8]Hamilton R L, Crosser O K.Thermal Conductivity of Heterogeneous Two-component Systems.Industrial and Engineering Chemistry Fundamentals, 1962, 1(3): 187-191
  • 9宣益民,李强.纳米流体强化传热研究[J].工程热物理学报,2000,21(4):466-470. 被引量:84
  • 10李强,宣益民.纳米流体强化导热系数机理初步分析[J].热能动力工程,2002,17(6):568-571. 被引量:30

共引文献51

同被引文献263

引证文献13

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部