摘要
从语义相关性角度分析超链归纳主题搜索(HITS)算法,发现其产生主题漂移的原因在于页面被投影到错误的语义基上,提出了一种基于模糊集的主题提取和层次发现算法(FSTH),通过用户日志扩展查询词,构造符合用户需要的个性化根集和基础集合,达到防止主题漂移的目的。FSTH采用模糊集划分方法,层次地发现与用户查询相关的主题页面集合,利用HITS算法分别计算每个主题页面集合中页面的权威值,返回与查询相关的其他主题权威页面。在14个查询上的实验结果表明,与HITS算法相比,FSTH算法不仅可以减少7%~53%的主题漂移率,而且可以发现与查询相关的多个主题。
To interpret the procedure of hypertext induced topic search based on a semantic relation model,the reason about the topic drift of HITS is found that Web pages are projected to a wrong latent semantic basis.A new fuzzy set based algorithm for topic distillation and hierarchical exploration(FSTH)is presented to improve the quality of topic distillation.Personalized root set and base set with query expansion is constructed using individual query logs to avoid the topic drift,and applying a hierarchical division algorithm based on fuzzy set to explore relative topics of user query,and then using HITS to evaluate and return authority pages of relative topics to end-users.The experimental results on 10 queries show that FSTH reduces topic drift rate by 7% to 53% compared to that of HITS,and discovers several relative topics to queries that have multiple meanings.
出处
《计算机工程》
CAS
CSCD
北大核心
2007年第18期40-41,44,共3页
Computer Engineering
基金
国家"863"计划基金资助项目(2001AA113182)
陕西省教育厅2006年专项科学研究计划基金资助项目(06JK229)
关键词
模糊集
超链归纳主题搜索
主题提取
主题漂移
查询扩展
fuzzy set
hypertext induced topic search
topic distillation
topic drift
query expansion
作者简介
周红芳(1976-),女,博士研究生。主研方向:数据仓库与数据挖掘,知识发现,粗糙集等; E-mail:zhouhf@xaut.edu.cn
冯博琴,教授.博士生导师