期刊文献+

基于Apriori改进算法的局部反馈查询扩展 被引量:3

Query Expansion of Local Feedback Based on Improved Apriori Algorithm
在线阅读 下载PDF
导出
摘要 提出面向查询扩展的Apriori改进算法,采用三种剪枝策略,极大提高挖掘效率;针对现有查询扩展存在的缺陷,提出基于Apriori改进算法的局部反馈查询扩展算法,该算法用Apriori改进算法对前列初检文档进行词间关联规则挖掘,提取含有原查询词的词间关联规则,构造规则库,从库中提取扩展词,实现查询扩展。实验结果表明该算法能够提高信息检索性能,与现有算法比较,在相同查全率水平级下其平均查准率有了明显提高。 An improved Apriori algorithm for query expansion is presented based on the thrice pruning strategy, This method can tremendously enhance the mining efficiency. After studying the limitations of existing query expansion, a novel query expansion algorithm of local feedback is proposed based on the improved Apriori algorithm, This algorithm can automatically mine those association rules related to original query in the top - rank retrieved documents using the improved Apriori algorithm, to construct an association rules - based database, and extract expansion terms related to original query from the database for query expansion. Experimental results show that our method is better than traditional ones in average precision.
出处 《现代图书情报技术》 CSSCI 北大核心 2007年第9期84-87,共4页 New Technology of Library and Information Service
关键词 查询扩展 APFIOFI算法 局部反馈 信息检索 Query expansion Apriori algorithm Local feedback Information retrieval
作者简介 E-mail:cyh8390@sina.com
  • 相关文献

参考文献7

  • 1Fonseca B M, Golgher P B, de Moura E S, et al. Ziviani. Discovering search engine related query using association rules[J].Journal of Web Engineering, 2004,2 (4) : 215 - 227.
  • 2Chengqi Zhang, Zhenxing Qin, Xiaowei Yan. Association- Based Segmentation for Chinese - Crossed Query Expansion [ J ]. IEEE Intelligent Informatics Bulletin, 2005,5 ( 1 ) : 18 - 25.
  • 3Gery M, Haddad M H. Knowledge discovery for automatic query expansion on the World-Wide Web[C]. In: Proceedings of Advances in Conceptual Modeling: ER 99 Workshops, Lecture Notes in Computer Science 1727, Springer, Paris, France, November 15-18, 1999:34-347.
  • 4Wei J, Qin Z X, Bressan S, et al. Mining Term Association Rules for Automatic Global Query Expansion : A Case Study with Topic 202 from TREC4 [ C ]. In Proceedings of Americas Conference on Information Systems , 2000.
  • 5Wei J, Bressan S, Beng Chin Ooi. Mining Term Association Rules for Automatic Global Query Expansion: Methodology and Preliminary Results[C]. Proceedings of First International Conference on Web Information Systems Engineering, Hong Kong, China, 2000:366 - 373.
  • 6Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large database[ C ]. In Proceeding of 1993 ACM SIGMOD International Conference on Management of Data, Washington D. C. ,1993:207-216.
  • 7Xu J X, Croft W B. Query expansion using local and global document analysis [ C ]. In Proc. CAN - SIGIR Conference Retrieval, Zurich, Switzerland, 1996 : 4 - 11.

同被引文献22

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部