期刊文献+

基于融合邻域信息的海面运动目标检测 被引量:3

Ship Detection Based on Neighboring Information Fusion
在线阅读 下载PDF
导出
摘要 运动视目标检测是视频信息处理的重要研究课题之一.本文提出了一种基于高斯混合模型邻域信息融合的海面运动目标检测算法.该算法融合了背景差分和背景邻域信息差分,充分利用同一幅图像的像素邻域信息得到运动目标的种子点,认为高斯背景差分图像中包含种子点的连通区域为真实前景目标.实验表明,该方法可以避免背景模型在构建或更新阶段对场景的表征不足或错误而造成的误检,对强光下的海杂波也有良好的抑制作用,且对不同的气候环境有较好的鲁棒性. Moving object detection is one of the most important research topics in the video information processing. This paper proposes a new method of tracking the moving maritime objects in video sequences based on neighboring information fusion using Gaussian mixture model. It fuses the background difference and neighboring background information difference,makes full use of the information of neighboring pixels to get the moving seed. The experimental results show that, when constructing and updating the background model,this method is able to avoid false detection from inadequate or incorrect background characterization completely. The proposed motion detection also restrains illumination from ocean wave and is robust to various climates.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期641-645,共5页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(60175008) 国家创新研究群体资助项目(60024301) 厦门大学985二期信息创新平台项目资助
关键词 邻域信息融合 高斯混合模型 运动目标检测 neighboring information fusion Gaussian mixture model moving object detection
作者简介 通讯作者:chli@xmu.edu.cn
  • 相关文献

参考文献8

  • 1Mariví Tello,Carlos López-Martínez,Jordi J Mallorqui.A novel algorithm for ship detection in SAR imagery based on the wavelet transform[J].IEEE Geoscience And Remote Sensing Letters,2005,2(2):201-205.
  • 2任明武,曹雨龙,杨静宇,唐振民.复杂条件下的船舶目标检测的图象预处理[J].计算机工程,2000,26(10):68-70. 被引量:8
  • 3Cao Yulong,Yang Jingyu,Ren Mingwu,et al.Novel object detection method by probability velocity field[C]//Machine Vision Applications in Industrial Inspection VIII.Bellingham,USA:SPIE,2000:309-314.
  • 4Nir Friedman,Stuart Russell.Image segmentation in video sequences:a probabilistic approach[C]//Proceedings of the Thirteenth Conference on Uncertainty in Arifical Intelligence (UVI).San Francisco,CA:Morgan Kaufmann Publishers,1997:175-181.
  • 5张明杰,李翠华,刘明业.基于高斯混合模型的海面运动目标检测[J].计算机工程与应用,2005,41(5):27-29. 被引量:7
  • 6Stauffer Chris,Grimson W E L.Adaptive background mixture models for real-time tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition.Fort Collins,Colorado:Computer Society,1999:246-252.
  • 7Hou Zhiqiang,Han Chongzhao.A background reconstruction algorithm based on pixel intensity classification in remote video survelliance system[C]// International Conference on Information Fusion.Stockholm,Swiden:FOI,2004:754-759.
  • 8王月兰,曾迎生.信息融合技术在彩色图像分割方法中的应用[J].计算机学报,2000,23(7):763-767. 被引量:24

二级参考文献20

  • 1宫小玉.用集群方法进行颜色选择[J].计算机世界月刊,1994(1):25-28. 被引量:4
  • 2黄庆明,张田文,潘少静.基于色彩学习的彩色图象分割方法[J].计算机研究与发展,1995,32(9):60-64. 被引量:23
  • 3杨宜和 周伟真.成象跟踪技术导论[M].西安:西安电子科技大学出版社,1991.10-12,49-50.
  • 4Zhang TianXu,Zuo ZhengRong,Zuo Zhen. Detection of Sea Surface Small Targets in Infrared Images Based on Multilevel Filter and Minimum Risk Bayes Test[J].International Journal of Pattern Recognition and Artificial Intelligence,2000; 14(7) :907~918
  • 5Sciotti M,Lombardo P.Ship detection in SAR images:a segmentationbased approach[C].In:IEEE Radar Conference,Atlanta,Georgia,2001:81~86
  • 6Lombardo P,Sciotti M.Segmentation-based technique for ship detection in SAR images[J].IEEE Proceedings on Radar,Sonar and Navigation,2001; 148 (3): 147~159
  • 7Wang P,Chong J,Wang H.Ship detection of the airborne SAR images[C].In:IEEE International Geoscience and Remote Sensing Symposium, Honolulu Hawaii,2000:348~350
  • 8Ren Mingwu,Cao Yulong. One Effective Method for Ship Recognition in Ship Locks[J].SPIE Proc,1999;3720
  • 9Cao Yulong,Ren Mingwu. On-line Monitoring for Ships in Lock[J].SPIE Proc, 1998 ;3534
  • 10Grimson W E L,Stauffer C,Romano R et al. Using Adaptive tracking to classify and monitor activities in a site[C].In:CVPR,Santa Barbara,California, 1998: 22~31

共引文献36

同被引文献32

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部