期刊文献+

Boosting集成支持向量回归机的滑坡位移预测 被引量:9

Boosting Ensemble of Support Vector Regression for Landslide Prediction
在线阅读 下载PDF
导出
摘要 支持向量回归机(SVR)在实际的学习应用中,由于数据时空的复杂性和算法本身的参数选择,学习模型难以达到预期的效果.针对这个问题,提出了基于Boosting集成的支持向量回归机方法.通过在原始数据集加权采样的基础上,进行多次迭代子SVR机器学习,不断调整样本权值再采样,优化机器学习模型,然后对迭代所得的每级支持向量回归结果按某种组合方法进行集成,得到最终的回归函数形式.应用该方法进行了仿真试验和滑坡变形时序预测研究.结果表明:使用集成的SVR进行回归预测较之单一的SVR具有更高的准确性和更好的泛化性.对Boosting与Bagging 2种不同的集成SVR,进行了比较研究,试验结果表明,2种算法性能相差不大,总体上前者强于后者. The regression results of the practically implemented support vector machines (SVR) are often far from the theoretically expected level because of the high complexity of time and space of real data, and it is difficult to practically select hyper-parameters for SVR. To improve the limited regression performance of the real SVR, we proposed a method to form committee machines for regression by using boosting techniques. In the process of algorithm, each sub-SVR was trained independently and the training set was created based on weighted random sampling from the original dataset. The final SVR solution was produced by aggregating the sub-SVRs results through methods such as least-squares estimation based weighting etc. Experiments on both artificial and real-world datasets indicated that the Boosting ensemble SVR outperformed single SVR. In addition, we compared ensembles constructed using boosting with those using bagging, and the results showed that boosting was generally much better.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第9期6-10,共5页 Journal of Hunan University:Natural Sciences
基金 贵州省交通建设科技项目(2003-318-80-201) 交通部西部重点基金资助项目(200331880201)
关键词 支持向量机 Boosting集成 BAGGING 滑坡位移 预测 support vector machines Boosting ensemble Bagging landslide displacement prediction
作者简介 董辉(1976-),男,湖南安乡人,中南大学博士研究生.通讯联系人,E-mail:aneurinsky@163.com.
  • 相关文献

参考文献10

  • 1刘开云,乔春生,滕文彦.边坡位移非线性时间序列采用支持向量机算法的智能建模与预测研究[J].岩土工程学报,2004,26(1):57-61. 被引量:65
  • 2赵洪波,冯夏庭.非线性位移时间序列预测的进化-支持向量机方法及应用[J].岩土工程学报,2003,25(4):468-471. 被引量:94
  • 3VAPNIK V.Statistical learning theory[M].New York:Wiley,1998.
  • 4袁小芳,王耀南,孙炜,杨辉前.一种用于RBF神经网络的支持向量机与BP的混合学习算法[J].湖南大学学报(自然科学版),2005,32(3):88-92. 被引量:8
  • 5CHERKASSKY V,MA Y.Practical selection of SVM parameters and noise estimation for SVM regression[J].Neural Networks,2004,17(1):113-126.
  • 6SMOLA A,MURATA N,SCHOLKOPF B,et al.Asymptotically optimal choice of ε-loss for support vector machines[C]//Proceedings of the International Conference on Artificial Neural Networks.Berlin:Springer,1998:105-110.
  • 7CHALIMOURDA A,SCHOLKOPF B,SMOLA A.Experimentally optima υ in support vector regression for different noise models and parameter settings[J].Neural Networks,2004,17(1):127-141.
  • 8CHERKASSKY V,MA Y.Selection of meta-parameters for support vector regression[C]//Proceedings of the International Conference on Artificial Neural Newtorks.London:Springer-Verlag,2002,241:687-693.
  • 9KIM H C,PANG S N.Constructing support vector machine ensemble[J].Pattern Recognition,2003,36(12):2757-2767.
  • 10CHANG C C,LIN C J.LIBSVM:A library for support vector machines[EB/OL].[2001].http://www.csie.ntu.edu.tw/-cjlin/libsvm.

二级参考文献17

  • 1刘勇 康力山.非数值并行算法(第二册)——遗传算法[M].北京:科学出版社,1997..
  • 2Burge CJC. A tutorial on support vector machines for pattern recognition[J] .Data Mining and Knowledge Discovery, 1998, (2) :121 - 167.
  • 3Alex J Smola, Bernhard Schoelkopf. A Tutorial on Support Vector Regression[R]. NeuroCOLT2 Technical Report Series, 1998.
  • 4John C Platt. Sequeotial Minimal Optimization:A Fast Algorithm for training Support Vector machines[R].Technical Report,1998
  • 5CHRISTOPHER J, BURGES C. A tutorial on support vector machines for pattern recognition [ J ]. Data Mining and Knowledge Discovery, 1998, 2 (2) : 121 - 167.
  • 6CHAN W C, CHAN CW, CHEUNG K C, etal. On the modelling of nonlinear dynamic system using support vector neural networks [ J ]. Engineering Applications of Artificial Intelligence,2001,14(2) : 105 - 113.
  • 7PETER Andras. The equivalence of support vector machine and regularization neural networks [ J ]. Neural Processing Letters,2002, 15(2) : 97 - 104.
  • 8PLATT J. Fast training of support vector machines using sequential minimum optimization [ A ]. Advance in Kernel Methods-support Vector Learning [ C ]. Cambridge : MIT Press, 1999,185 - 208.
  • 9VAPNIK V. The nature of statistical learning theory[ M ] . New York : Springer, 1995.
  • 10NELLOCritianini JOHNShawe-taylor 李国正 王猛 曾华军译.支持向量机导论[M].北京:电子工业出版社,2004..

共引文献151

同被引文献123

引证文献9

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部