期刊文献+

基于模糊神经网络控制的镍氢电池智能充电 被引量:5

Intelligent Charge of MH-Ni Battery Based on Fuzzy Neural Network Control
在线阅读 下载PDF
导出
摘要 镍氢蓄电池是具有复杂性和离散性的非线性系统,为其所建的数学模型或者不准确或者太复杂,现有的镍氢蓄电池充电技术一直不太完善,严重地影响了充电速度与质量。针对这一问题,将神经网络与模糊控制相结合,设计了模糊神经网络控制器,用于对MH-Ni蓄电池进行智能充电。通过Matlab仿真,发现充电过程中电压变化平稳,充电时间短,达到了控制要求。 MH-Ni battery is a complex nonlinear and discrete system whose mathematic model is much more complex and inaccurate. Existing charge technology of MH-Ni battery is faultiness, which 'affects gravely charging st^ed and quality.The neural network and fuzzy control are eombined to design fuzzy neural network controller to charge the MH-Ni battery intelligently. The Matlab stimulation results show that the voltage ehanges placidly and this method can shorten the charge time and realize intelligent ebarge of MH-Ni battery.
出处 《控制工程》 CSCD 2007年第5期476-478,共3页 Control Engineering of China
关键词 模糊神经网络 智能充电 MH—Ni电池 fuzzy neural network intelligent charge MH-Ni battery
作者简介 张秀玲(1968-),女,山东章丘人,教授,博士,主要从事神经网络智能控制等方面的教学与科研工作。
  • 相关文献

参考文献6

  • 1Zhan F,Jiang L J,Wu B R,et al.Characteristics of Ni/MH power battery and its application to electric vehicles[J].Journal of Alloys and Compounds,1999,293(1):804-808.
  • 2Jossen A,Spath V,Dorin H,et al.Reliable battery operation-a challenge for the battery management system[J].J Power Sources,1999,84(2):283-286.
  • 3程荣贵,马军骥,刘永祥.镍镉或镍氢电池快速充电控制电路bq2004[J].通信电源技术,2003,20(2):23-27. 被引量:1
  • 4Lee C H,Teng C C.Identification and control of dynamic systems using recurrent fuzzy neural networks[J].IEEE Transactions on Fuzzy Systems,2000,8(4):349-366.
  • 5Wu J L,Pei Z,Qin K Y.Design of two-fuzzy neural-network controller for nonlinear systems[C].Xi'an:Proceedings of the Second International Conference on Machine Learning and Cybernetics,2003.
  • 6王海霞.模糊神经网络在水质评价中的应用[M].重庆:重庆大学出版社,2002.

共引文献1

同被引文献23

引证文献5

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部