期刊文献+

股票价格冲击混合分布分类信息GARCH模型及其应用 被引量:1

Impacts on Stock Price through Mixed Distribution Classified Information GARCH Model and Its Application
在线阅读 下载PDF
导出
摘要 基于现有的股票价格时间序列模型,建立了一个股票价格冲击混合分布分类信息GARCH模型,引入指令簿信息,可以在解释股价变动的自相关性和异方差特性的同时,度量交易量对价格的冲击系数,进一步将价格冲击系数应用于投资优化中,可以得到投资组合的最优交易策略. Based on the stock price timing serial model, this article established a mixed distribution classified information GARCH (Generalized Autoregressive Conditional Heteroscedasticity) model, introducing the information from order books. Thus, it can measure the stock price impact coefficient from trade volume, and at the same time explain the auto-correlation and heteroscedastic characteristic of price variation. Furthermore, the price impact coefficient is applied to investment optimization, thus an optimal cashing strategy of the investment portfolio is achieved.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2007年第7期1105-1109,共5页 Journal of Shanghai Jiaotong University
关键词 价格冲击 分类信息 限价指令 广义自回归条件方差 price impact classified information limit order generalized autoregressive conditional heteroscedasticity (GARCH)
作者简介 寻明辉(1975-),男,黑龙江哈尔滨人,博士,主要从事金融市场微观结构理论及投资风险管理领域的研究, 电话(Tel.):021-62933970;E-mail:xunminghui@163.com.
  • 相关文献

参考文献8

  • 1Kyle A.Continuous auctions and insider trading[J].Econometrica,1985,53:1315-1335.
  • 2Glosten L R,Harris L E.Estimating the components of bid-ask spread[J].Journal of Financial Economics,1988,21:132-142
  • 3Brennan M J,Avanidhar S.Market microstructure and asset pricing:On the compensation for illiquidity in stock returns[J].Journal of Financial Economics 1996,41:441-464.
  • 4Lamourenx C,William D L.Heteroskedasticity in stock return data:Volume versus GARCH effects[J].Journal of Finance,1990,45:221-229.
  • 5Craig A D.Good news,bad news and GARCH effects in stock return data[J].Journal of Applied Economics,2001,11:313-327.
  • 6Harris L.Liquidity,trading rules and electronic trading systems[C]//Monograph Serious in Finance and Economics,New York University Salomon Center.New York:New York University,1990.
  • 7Harris L,Panchapagesan V.The information content of the limit order book:Evidence from NYSE specialist trading decisions[J].Journal of Financial Markets,2005,8:25-67.
  • 8Huang R,Stoll H.Market microstructure and stock return predictions[J].Review of Financial Studies,1994,7:179-213.

同被引文献11

  • 1凌士勤,杨波,袁开洪.分类信息对股市波动的影响研究[J].中国管理科学,2005,13(3):20-25. 被引量:6
  • 2ENGLE R. Autoregressive conditional heteroskedasticity with estimates of the variance of U. K. inflation [ J ]. Econometrica, 1982,50(4) :987-1008.
  • 3BOLLERSLEV T. Generalized autoregressive conditional heteroskedasticity [ J ]. Journal of Econometrics, 1986,31 (3) : 307-327.
  • 4OSBORNE M. Brownian motion in the stock market [ J ]. Operation Research, 1959 (7) : 145-173.
  • 5CLARK P. A subordinated stochastic process model with finite variance for speculative prices [ J]. Econometrica, 1973,41 (1) : 135-156.
  • 6TAUCHEN G,PITTS M. The Price variability-volume relationship on speculative markets [ J ]. Econometrica, 1983,51 (2): 485-506.
  • 7LAMOURENX C, WILLIAM D. Heteroskedasticity in stock return data:volume versus garch effects [ J ]. Journal of Finance, 1990(45 ) :221-229.
  • 8TORBEN G. Return volatility and trading volume:an information flow interpretation of stochastic volatility [ J ]. Journal of Finance, 1996,7 ( 1 ) : 169-204.
  • 9CRAIG A. Good news, bad news and GARCH effects in stock return data [ J]. Journal of Applied Economics, 1999,4 (2): 313-327.
  • 10BHAR R,MALLIARIS A. Volume and volatility in foreign currency futures markets [ J ]. Review of Quantitative Finance and Accounting, 1998 (10) :285-302.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部