期刊文献+

一种改进的神经网络板形模式识别方法

An Improved Approach of Neural Network Flatness Pattern Recognition
在线阅读 下载PDF
导出
摘要 本文提出了一种改进的神经网络板形模式识别方法,该方法基于支持向量机(SVM)与径向基(RBF)网络的结构等价性,利用SVM的回归确定RBF网络较优的初始参数,解决了传统神经网络模式识别方法存在的网络学习时间长,易陷入局部极小值等问题。此外,由于板形标准模式具有两两互反性,将输入样本与基本模式的模糊距离差作为网络输入,使输入节点减少一半,近一步实现了网络结构的固定化和简单化。实验表明,它提高了板形识别精度和速度,可推广到其他标准模式具有两两互反性的模式识别中。 The Improved approach has been proposed based on the structural equivalence of radial basis function (RBF) network and Support Vector Machines (SVM). The optimal initial parameters of RBF network were gained through SVM regression, which has solved problems of the traditional method known as neural network with slow convergence and local minimum etc. Moreover, according to the reciprocal characteristic of every two typical patterns, the deduction of fuzzy distance measure was applied, which has got the numbers of the inputs declined by a half and developed the realization of the changeless and simple structure of the neural network. The improved RBF network approach to flatness pattern recognition based on SVM learning has been proved with high preci- sion and speed. It could also be put into other fields in which Reciprocal polynomials for every two typical patterns are existed.
出处 《微计算机信息》 北大核心 2007年第02S期273-274,280,共3页 Control & Automation
基金 本项目为河北省教育厅自然科学指导性计划项目(Z2005309)
关键词 板形模式 识别方法 向量机 径向基 Flamess Pattern,Recognition Approach,Vector Machines,Radial Basis Function
作者简介 张洪星(1967-),男(汉族),河北省南皮县人,军需工业学院电子工程系副教授,硕士研究生,主研领域:数据库、人工智能,E—mial:JISUAN2001@YAH00.COM.CN。通讯地址:(0540035河北邢台解放军军需工业学院)张洪星
  • 相关文献

参考文献8

二级参考文献24

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部