期刊文献+

基于小波分析的自适应噪声识别 被引量:2

Adaptive identifying of noise types based on wavelet analysis
在线阅读 下载PDF
导出
摘要 图像噪声类型直接影响去噪方法的去噪效果。因此,研究图像噪声类型的识别,对于数字图像去噪方法效果的提高具有重要意义。利用小波分解的高频系数,分析直方图和曲线拟合图的跳变出现概率特征以及黄金分割点处的窗口宽度特征,提出一种数字图象噪声类型自适应识别方法。针对图像噪声识别类型,采用相适用去噪方法提高图像去噪效果。通过大量实验表明,该方法是切实有效的。 Noise types of images directely impacted on the result for denoising.Therefor,the research to identify noise types of image was of great significance to the improvement of digital image denoising.A adaptive identification of noise types of digital image algorithm was mentioned by researching of the obvious features--probability of the emergence of jump points and window width of Golden Section points--extracted from the histogram and curve fitting and using high-frequency coefficients of wavelet decomposition.Aiming at the identification of noise types of image, applicable denoising was used to improve the effect of image denoising. The numerous experiments showed that this methodology used to identify the noise types was effective.
出处 《铁路计算机应用》 2007年第8期11-14,共4页 Railway Computer Application
基金 成都理工大学地质灾害防治与地质环境保护国家专业实验室开放基金(GI2004-07)
关键词 图像处理 小波分解 噪声识别 跳变点 黄金分割 image processing wavelet analysis identifying of noise types jump point golden section
作者简介 徐莉,在读硕士研究生; 黄地龙,教授。
  • 相关文献

参考文献2

二级参考文献71

  • 1[9]You Yuli, Kaveh D. Fourth-order partial differential equations for noise removal[J]. IEEE Trans. Image Processing, 2000,9(10):1723~1730.
  • 2[10]Bouman C, Sauer K. A generalized Gaussian image model of edge preserving map estimation[J]. IEEE Trans. Image Processing, 1993,2(3):296~310.
  • 3[11]Ching P C, So H C, Wu S Q. On wavelet denoising and its applications to time delay estimation[J]. IEEE Trans. Signal Processing,1999,47(10):2879~2882.
  • 4[12]Deng Liping, Harris J G. Wavelet denoising of chirp-like signals in the Fourier domain[A]. In:Proceedings of the IEEE International Symposium on Circuits and Systems[C]. Orlando USA, 1999:Ⅲ-540-Ⅲ-543.
  • 5[13]Gunawan D. Denoising images using wavelet transform[A]. In:Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing[C]. Victoria BC,USA, 1999:83~85.
  • 6[14]Baraniuk R G. Wavelet soft-thresholding of time-frequency representations[A]. In:Proceedings of IEEE International Conference on Image Processing[C]. Texas USA,1994:71~74.
  • 7[15]Lun D P K, Hsung T C. Image denoising using wavelet transform modulus sum[A]. In:Proceedings of the 4th International Conference on Signal Processing[C]. Beijing China,1998:1113~1116.
  • 8[16]Hsung T C, Chan T C L, Lun D P K et al. Embedded singularity detection zerotree wavelet coding[A].In:Proceedings of IEEE International Conference on Image Processing[C]. Kobe Japan, 1999:274~278.
  • 9[17]Krishnan S, Rangayyan R M. Denoising knee joint vibration signals using adaptive time-frequency representations[A]. In:Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering 'Engineering Solutions for the Next Millennium[C]. Alberta Canada, 1999:1495~1500.
  • 10[18]Liu Bin, Wang Yuanyuan, Wang Weiqi. Spectrogram enhancement algorithm: A soft thresholding-based approach[J]. Ultrasound in Medical and Biology, 1999,25(5):839~846.

共引文献284

同被引文献18

  • 1张旗,梁德群,樊鑫,李文举.基于小波域的图像噪声类型识别与估计[J].红外与毫米波学报,2004,23(4):281-285. 被引量:32
  • 2王浩,曾欢.几种图像去噪平滑算法的性能分析[J].科技资讯,2006,4(3):1-2. 被引量:8
  • 3冈萨雷斯.数字图像处理[M].2版.北京:电子工业出版社,2006.
  • 4Xie JC, Zhang DL, Wu WL. Overview on wavelet image denoising[J]. Journal of Image and Graphics, 2002, 7A($): 209-217.
  • 5Buades A, Coll B, Morel JM. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling & Simulation, 2005, 4(2): 490-530.
  • 6Gonzalez RC, Woods RE. Digital image processing[M]. 2 ed. Beijing: Publishing House of Electron Industry, 2002. 88-94.
  • 7~iller M, Kingsbury N. Image denoising using derotated complex wavelet coefficients[J]. IEEE Transactions on Image Processing, 2008, 17: 1500-1511.
  • 8Oonoho DL, Johnstone IM. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994, 81: 425-455.
  • 9Zhang Z, Blum RS. On estimating the quality of noisy images[A]. IEEE International Conference on Acoustic Speech and Signal Processing, 5, 1998: 2897-2900.
  • 10Bui TD, Chen GY. Translation invariant denoising using multiwavelets[J], IEEE Transactions on Signal Processing, 1998, 46(12): 3414-3420.

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部