期刊文献+

强电场中甲烷活化的汤生模型及反应动力学分析 被引量:1

Townsend ionization model and kinetic analysis of methane activated in strong electric field
在线阅读 下载PDF
导出
摘要 在强电场等离子体中,由于电子能量分布较大地偏离玻尔兹曼函数,文中采用汤生(Townsend)电离模型推导了平行电极介质势垒放电中高能电子碰撞使甲烷分子裂解为自由基的速率常数,得到了与放电电压相关联的自由基生成速率常数表达式。以选择的49个自由基反应为基础,对反应中生成的12种稳定分子和自由基的动力学行为进行了数值模拟。模拟得到的甲烷平衡转化率,C2烃收率和选择性较好地符合实验结果。在此基础上,进行了各反应对生成物贡献的动力学分析。分析表明甲烷转化主要依靠电子碰撞,C2烃生成是多种自由基反应共同作用的结果。同时指出了起主要作用的一些自由基反应。 Because the distribution of electrons in strong electric field is departure from Boltzmann energy distribution, the rate constant of methane activated by energetic electrons in dielectric barrier discharge (DBD) was derived by Townsend ionization model and the expression of the rate constant related to the voltage of discharge was obtained. A kinetic simulation based on 49 free-radical reactions between 12 kinds of species was carried out. It presents that the simulation results agree well with the experiments. The kinetic analysis indicates that the decomposition of methane is mainly depended on the energetic electrons; the formation of C2 hydrocarbon is due to a couple of radical reactions. Some important radical reactions were given by the analysis.
出处 《化学工程》 EI CAS CSCD 北大核心 2007年第8期25-28,41,共5页 Chemical Engineering(China)
基金 国家自然科学基金资助项目(10475060)
关键词 DBD等离子体 反应动力学 甲烷活化 速率常数 强电场 C2烃 DBD plasma kinetics of reaction methane activation rate constant strong electric field C2 hydrocarbon
作者简介 李洁(1982-),女,硕士生,研究方向为等离子体化工,E-mail:lijie-5490@163.com; 印永祥,通讯联系人,电话:(028)66708729E-mail:hyyx0675@sina.com。
  • 相关文献

参考文献12

  • 1Thanyachotpaiboon K,Chavadej S,Cadwell T A,et al.Conversion of methane to higher hydrocarbons in AC nonequilibrium plasma[J].AICHE Jounal,1998,44(10):2 252-2 257.
  • 2印永祥,戴晓雁,张泽敏,温才文.交流非平衡等离子体裂解甲烷制C_2烃[J].核聚变与等离子体物理,2002,22(1):54-56. 被引量:2
  • 3Pietruszka B,Anklam K,Heintze M.Plasma-assisted partial oxidation of methane to synthesis gas in a dielectric barrier discharge[J].Applied Catalysis A,General,2004,261(1):19-24.
  • 4Aghamir F H,Matin N S,Jalili A H,et al.Conversion of methane to methanol in an AC dielectric barrier discharge[J].Plasma Source Sience and Technology,2004,13(4):707-711.
  • 5Wang Yu,Liu Changjun,Zhang Yueping.Plasma me-thane conversion in the presence of dimethyl ether using dielectric barrier discharge[J].Energy and Fuels,2005,19(3):877-881.
  • 6Legrand J C,Diamy A M,Hrach R,et al.Kinetics of reactions in CH4/N2 afterglow plasma:A simplified model[J].Vacuum,1998,50(3-4):491-495.
  • 7Legrand J C,Diamy A M,Hrach R,et al.Kinetics of reactions in CH4/N2 afterglow plasma[J].Vacuum,1997,48(7-9):671-675.
  • 8Bou P,Boettner J C,Vandenbulcke L.Kinetics calculations in plasmas used for diamond deposition[J].Jpn J Appl Phys,1992,31(part 1 No.5A):1 505-1 503.
  • 9Tahara H,Minami K,Murai A,et al.Diagnostic experiment and kinetics model analysis of microwave CH4/H2 plasma for deposition of diamondlike carbon films[J].Jpn J Appl Phys,1995,34(part 1):1 972-1 979.
  • 10Legrand J C,Diamy A M,Hrach R,et al.Mechanism of methane decomposition in nitrogen afterglow plasma[J].Vacuum,1999,52:27-32.

二级参考文献3

共引文献1

同被引文献15

  • 1CARCSACI C, FACCHINI B, HARVEY S. Modular ap- proach to analysis of chemically recuperated gas turbine cy- cles[ J ]. Energy Conversion Management, 1998 ; 39 ( 16/18) : 1693-1703.
  • 2PAN Fumin, ZHENG Hongtao, LIU Qingzhen,et al. Design and performance calculations of chemically recuperated gas turbine on ship[J]. Proc IMechE Part A: J Power and En- ergy, 2013, 227(8) : 908-918.
  • 3HAMMER T, KAPPES T, BALDAUF M. Plasma catalytic hybrid processes: gas discharge initiation and plasma activa- tion of catalytic processes [ J ]. Catalysis Today, 2004, 89 : 5-14.
  • 4RUSU I, CORMIER J M. On a possible mechanism of the methane steam reforming in a gliding arc reactor[ J]. Chem- ical Engineering Journal, 2003, 91 : 23-31.
  • 5PETROVI D, MARTENS T, Van DIJK J, et al. Modeling of a dielectric barrier discharge used as a flowing chemical re- actor [ J ]. Journal of Physics : Conference Series, 2008, 133: 1-8.
  • 6NAIR S A, NOZAKI T, OKAZAKI K. Methane oxidative conversion pathways in a dielectric barrier discharge reactor- Investigation of gas phase mechanism [ J ]. Chemical Engi- neering Journal, 2007, 132: 85-95.
  • 7SUGASAWA M, TERASAWA T, FUTAMURA S. Effects ofinitial water content on steam reforming of aliphatic hydro- carbons with nonthermal plasma[ J ]. Journal of Electrostat- ics, 2010, 68: 212-217.
  • 8HIRAOKA K, AOYAMA K, MORISE K. A study of reac- tion mechanisms of methane in a radio-frequency glow dis- charge plasma using radical and ion scavengers [ J ]. Cana- dina Journal of Chemistry, 1985, 63 : 2899-2905.
  • 9HAGELAAR G J M, PITCHFORD L C. Solving the Boltz- mann equation to obtain electron transport coefficients and rate coefficients for fluid models [ J ]. Plasma Sci Sources and Tech, 2005, 14: 722.
  • 10KEE R J, RUPLEY F M., MEEKS E, et al. CHEMKIN- III: a Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. SAND96-8216, 1996 CHEMKIN-PRO [ R]. San Diego: Reaction Design, 2008.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部