期刊文献+

一种基于形态学的小波阈值去噪方法

An Wavelet Threshold Denoising Method Based on Morphology
在线阅读 下载PDF
导出
摘要 如何选取阈值是小波图像去噪的关键,在图像去噪的同时,还应尽量保留图像的边缘信息,基于这一思想,提出了一种基于形态学的小波去噪算法。用数学形态学算子对图像小波变换后的小波系数进行处理,并结合半-软阈值去噪技术。实验表明,该算法在去噪的同时,很好地保留了图像的边缘信息。 How to select the threshold is the key to wavelet image denoising. Maintenance of more edge information is requisite in the denoising process. According to the idea, an image denoising method based on wavelet transform and mathematic morphology is proposed. The coefficients of wavelet transform of image are manipulated by morphological operator and semi-soft threshold denoising method. The experiment proves that, the proposed method can preserve more image edges as deniosing.
出处 《微计算机信息》 北大核心 2007年第04X期311-312,165,共3页 Control & Automation
基金 中国博士后科学基金资助项目(2005038095) 山西省自然科学基金资助项目(20051043)
关键词 小波变换 形态学 半-软阈值 图像去噪 Wavelet transform,Morphology, semi-soft threshold, Image denoising
作者简介 侯慧玲(1981-),女,硕士研究生,主要研究方向:图像降噪与增强技术 通讯地址:(030051中北大学信息与通信工程学院)侯慧玲 王明泉(1970),男,博士后,教授,主要研究方向:一维和多维信号与信息处理、分析与重构。
  • 相关文献

参考文献4

二级参考文献68

  • 1雷凌,王志良.基于BREW的无线图像监控系统[J].微计算机信息,2005,21(3):60-61. 被引量:5
  • 2[9]You Yuli, Kaveh D. Fourth-order partial differential equations for noise removal[J]. IEEE Trans. Image Processing, 2000,9(10):1723~1730.
  • 3[10]Bouman C, Sauer K. A generalized Gaussian image model of edge preserving map estimation[J]. IEEE Trans. Image Processing, 1993,2(3):296~310.
  • 4[11]Ching P C, So H C, Wu S Q. On wavelet denoising and its applications to time delay estimation[J]. IEEE Trans. Signal Processing,1999,47(10):2879~2882.
  • 5[12]Deng Liping, Harris J G. Wavelet denoising of chirp-like signals in the Fourier domain[A]. In:Proceedings of the IEEE International Symposium on Circuits and Systems[C]. Orlando USA, 1999:Ⅲ-540-Ⅲ-543.
  • 6[13]Gunawan D. Denoising images using wavelet transform[A]. In:Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing[C]. Victoria BC,USA, 1999:83~85.
  • 7[14]Baraniuk R G. Wavelet soft-thresholding of time-frequency representations[A]. In:Proceedings of IEEE International Conference on Image Processing[C]. Texas USA,1994:71~74.
  • 8[15]Lun D P K, Hsung T C. Image denoising using wavelet transform modulus sum[A]. In:Proceedings of the 4th International Conference on Signal Processing[C]. Beijing China,1998:1113~1116.
  • 9[16]Hsung T C, Chan T C L, Lun D P K et al. Embedded singularity detection zerotree wavelet coding[A].In:Proceedings of IEEE International Conference on Image Processing[C]. Kobe Japan, 1999:274~278.
  • 10[17]Krishnan S, Rangayyan R M. Denoising knee joint vibration signals using adaptive time-frequency representations[A]. In:Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering 'Engineering Solutions for the Next Millennium[C]. Alberta Canada, 1999:1495~1500.

共引文献318

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部