期刊文献+

基于径向基神经网络杯形件拉深成形变压边力预测技术研究 被引量:8

A study on the prediction technology of variable blank-holding force for deep drawing forming of cup shaped parts based on radial basis neural network
在线阅读 下载PDF
导出
摘要 分析了RBF神经网络的预测策略和方法,并建立了板料拉深成形的变压边力预测神经网络模型。采用正交设计法进行样本参数的制定,利用板材成形CAE软件Dynaform获得训练数据,利用被训练好的神经网络对薄板成形过程中变压边力的预测技术进行了研究。数值模拟结果表明,此方法对拉深成形变压边力的预测是可行的。 The prediction strategy and method of radial basis force (RBF) neural network were analyzed, and the neural network model for the prediction of variable blank-holding force in the deep drawing forming of sheet materials was established. The constitution of sample book parameters was carried out by adopting the orthogonal designing method and by the use of sheet material forming CAE software Dynaform to obtain the training data. The study on the prediction technology of variable blank holding force in the forming process of sheet metal was carried out by utilizing the being trained neural network. The result of numerical simulation showed that this method is feasible for the prediction of variable blank holding force of deep drawing formation.
出处 《机械设计》 CSCD 北大核心 2007年第8期36-38,共3页 Journal of Machine Design
关键词 变压边力 板材成形 径向基函数 RBF神经网络 variable blank holding force sheet material formation radial basis function RBF neural network
作者简介 张晓斌(1972-),男,安徽宣城人,南京理工大学机械工程学院博士生,讲师,研究方向:板料成形加工工艺优化及过程控制,发表论文5篇。
  • 相关文献

参考文献8

  • 1Park H J,Altan T.A fuzzy self-learning control method with application to hydroforming processes[J].Trans ASME,Journal of Engineering for Industry,1995,117:197-303.
  • 2Ken-ichi Manabe,Yang M.Intelligent technology on sheet metal forming[J].Journal of the JSTP,1993,34(387):398-404.
  • 3Hardt D E,Lee Y.Close-loop control of sheet metal stability during stamping[C].Proceedings of 13^th North American Manufacturing Research Conference,Society of Manufacturing Engineers,Dearborn,Michigan,New York:Plenum Press,1986:315-322.
  • 4Ahmetoglu M,Altan T,G L.Improving draw ability of round and nonsymmetric part[R].Society of automotive engineers technical paper No 930287,New York:Plenum Press,1993:428-435.
  • 5Ghouati O,Lenoir H.Design and control of forming processes using optimization techniques[C].Proceedings of the ASME design engineering technical conference,Las Vegas:Nevade Press,1995.
  • 6包友霞,徐伟力,刘罡,林忠钦.薄板成形中变压边力优化设计方法[J].机械工程学报,2001,37(2):105-109. 被引量:20
  • 7智会强,牛坤,田亮,杨增军.BP网络和RBF网络在函数逼近领域内的比较研究[J].科技通报,2005,21(2):193-197. 被引量:39
  • 8赵军,罗亚军,曹宏强.轴对称件拉深成形智能化控制过程中材料参数识别的神经网络模型设计[J].燕山大学学报,2000,24(2):95-98. 被引量:17

二级参考文献19

  • 1张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1994..
  • 2赵军 马丽霞 等.拉深过程智能化控制中摩擦系数识别非线性问题的线性化算法[A]..全国第七届锻压学术年会论文集:[C].北京:航至工业出版社,1999.339-342.
  • 3赵军 等.锥形件智能化拉深实验系统[A]..中国机械工程学会锻压学会第五届冲压学术年会论文集[C].南昌:江西高校出版社,1998.3—6.
  • 4[1]Ahmetoglu M A, Altan T, Kinzel G L. Improvment of part quality in stamping by controlling blank-holder force and pressure. Journal Of Materials P rocessing Tech., 1992,33∶ 195~214
  • 5[2]Ahmetoglu M A, Coremans A, Kinzel G L, et al. Improving drawability by using variable blank holder force and pressure in deep drawing of round and n on-symmetric parts. SAE Trans. of Materials & Manufacturing, 1993
  • 6[3]Mattiasson Kjell, Bernspang Lars. On the use of variable blankholder force in sheet metal stamping. Simulation of Materials Processing: Theory, Meth ods and Applications, 1998
  • 7[4]Hillmann M, Kubli W. Optimization of sheet metal forming processis us ing simulation programs. In∶ Proceedings of NUMISHEET'99, 1999
  • 8[5]Ghouati O, Lenoir H, Gelin J C. Optimization techniqiues for the draw ing of sheet metal parts. In∶ Proceedings of NUMISHEET'99, 1999
  • 9[6]Ohata T, Nakamachi E. Development of optimum process design system by numerical simulation. Journal of Materials Processing Technology, 1996, 60∶ 5 43~548
  • 10[7]Ohata T, Nakamachi E, et al. Improvement of optimum process design s ystem by numerical simulation. Journal of Materials Processing Technology, 1998 , 81∶ 635-641

共引文献73

同被引文献72

引证文献8

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部