期刊文献+

最大间隔分类器及其在入侵检测中的应用 被引量:2

The Large Margin Classifier and Its Application in Intrusion Detection
在线阅读 下载PDF
导出
摘要 本文研究了基于SVM的最大间隔分类器的建立及其应用,即将最大间隔理论应用到了SVM的多类分上上,提出了一种新的基于SVM的多类分类器。本文将该模型应用到了入侵检测上,并在试验上取得了很好的效果。 This paper discusses the modeling and application of The Large Margin Classifier Based on SVM. In other words, it studies how to apply large margin theory in Multi-class classification based on SVM, A new multi-class classification model also be presented. The paper applies The Large Margin Classifier into Intrusion Detection, and experiments show good classified performance.
作者 万雅静 贺明
出处 《微计算机信息》 北大核心 2007年第18期227-229,共3页 Control & Automation
关键词 SVM 最大间隔 入侵检测 多类分类 SVM Large Margin Intrusion Detection Multi-stage Classification
作者简介 万雅静(1968-),女,河北邢台人,河北机电职业技术学院副教授,硕士,1990年毕业于西安建筑科技大学自控系计算机及应用专业,通讯地址:(054048 河北省 邢台市中兴西大街466号); 贺明(1978-),男,河南南阳人,河北机电职业技术学院计算机信息工程系副主任,2007年3月获得天津大学计算机应用技术专业硕士学位.
  • 相关文献

参考文献4

二级参考文献19

  • 1王卫东,平西建,丁益洪.立体足迹重压面提取与描述[J].微计算机信息,2005,21(09X):103-104. 被引量:4
  • 2Hsu C.W., Lin C.J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 2002, 13(2): 415~425.
  • 3Weston J., Watkins C. Multi-class support vector machines. Department of Computer Science, Royal Holloway University of London Technical Report, SD-TR-98-04, 1998.
  • 4Kressel Ulrich. Pairwise classification and support vector machines. In: Schkopf B., Burges C.J.C., Smola A.J. eds. Advances in Kernel Methods--Support Vector Learning, Cambridge, MA: MIT Press, 1998, 255~268.
  • 5Platt J.C., Cristianini N., Shawe-Taylor J. Large margin DAG's for multiclass classification. Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2000, 12: 547~553.
  • 6Li Kun-Lun, Huang Hou-Kuan, Tian Sheng-Feng. A novel multi-class SVM classifier based on DDAG. In: Proceedings of IEEE ICMLC'02, Beijing, China, 2002, 3: 1203~1207.
  • 7Burges J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121~167.
  • 8Vapnik V. Statistical Learning Theory. New York: Springer Verlag, 1998.
  • 9Corts C., Vapnik V. Support vector networks. Machine Learning, 1995, 20(3): 273~297.
  • 10Y. Rui, T.S. Huang, S.F. Chang, “Image Retrieval: Past, Present, And Future” [A], Proceedings International Symposium on Multimedia Information Processing[C], 1997.

共引文献59

同被引文献15

  • 1谢逸,余顺争.基于Web用户浏览行为的统计异常检测[J].软件学报,2007,18(4):967-977. 被引量:42
  • 2Vapnik V. Statistical Learning Theory [M]. New York: Springer Verlag, 1998.
  • 3Krebel U. Pairwise Classification and Support Vector Machines [M]. In: B Seholkopf, CJC Burges,AJ Smola eds. Advances in Kernel Methods: Support Vector Learning, The MIT Press, Cambridge, 1999, pp.255-268.
  • 4Bottou L, Cortes C, Dcnker, et al. Comparison of Classifier Methods: A Case Study in HandwTiting Digit Recognition [C]. In Proc. of International Conference on Pattern Recognition, IEEE Computer Society Press, 1994, pp.77-87.
  • 5Platt J C, Cristianini N, Shawe-Taylor J. Large Margin DAGs for Muhiclass Classification. In Advances in Neural Information Processing Systems[C], MIT Press, 2000; 12; pp.547-553.
  • 6Takahashi F, Abe S. Decision-Tree-Based Multiclass Support Vector Machines [C]. In Proc. of the 9th International Joint Conference on Networks. Singapore, 2002.(3) pp.1418- 1422.
  • 7KDD Cup 1999 Data [EB/OL].1999-10.http://kdd.ics.uci.edu/ databases/kddcup99.html.
  • 8Witten I.H. and Frank E. Data Mining: PracticalMachine Learning Tools with Java Implementations [M], MorganKaufmann, San Francisco, 2000.
  • 9Fan R.E., Chen P.H., Lin C.J., Working Set Selection Using Order Information for Training Support Vector Machines [C], the Journal of Machine Learning Research, Volume 6, December 2005, pp.1889-1918.
  • 10Tax D, Duin R. Support Vector Domain Description .Pattern Recognition Letters. 1999, 20:1191-1199.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部