期刊文献+

一类简化的时滞半导体激光方程的Hopf分岔

Hopf Bifurcation of the Simple Semiconductor Laser Equations with time Delay
原文传递
导出
摘要 研究一类简化的时滞半导体激光方程的稳定性和Hopf分岔.以时滞量为参数,分析系统线性化方程零解的稳定性,给出系统产生Hopf分岔临界时滞表达式,最后用数值模拟对结论进行验证. A kind of oscillator semiconductor laser model with time delay is considered. Taking the time delay as a bifurcation parameter, the linear stability of the equilibrium is investigated. The critical time delay associated with Hopf bifurcation is determined. Finally, numerical simulations are performed to verify the analytical prediction.
作者 王作雷
机构地区 江苏大学理学院
出处 《数学的实践与认识》 CSCD 北大核心 2007年第15期110-114,共5页 Mathematics in Practice and Theory
基金 国家科学自然基金(10602020)
关键词 时滞 稳定性 HOPF分岔 time delay stability hopf bifurcation
  • 相关文献

参考文献12

  • 1Liao X F. Li S W. Wong K-W. Hopf bifurcation on a two-neuron system with distributed delays: a frequency domain approach[J]. Nonlinear Dynamics. 2003,31 (3) :299-326.
  • 2VanWiggeren G D, Roy R. Chaotic communication using time-delayed optical systems[J]. Int J Bifurcation Chaos Appl Sci Eng.1999,9:2129-2156.
  • 3Betur A Belair, J Labrie C. Feedback and delays in neurological diseases: a modeling study using dynamical systems[J ]. Bulletin of Mathematical Biology. 1993,55 : 525-541.
  • 4Lang R, Kobayashi K. External optical feedback effects on semiconductor injection laser properties[J]. IEEE J Quantum Electron, 1980,QE-16 : 347-355.
  • 5Haegeman B, Engelborghs K, Roose D, Pieroux D, Erneux T. Stability and rupture of bifurcation bridges in semiconductor lasers subject to optical feedback[J]. Phys Rev E,2002,66:046216 1-6.
  • 6Lenstra D, Van Vaalen M, Jassorzynska B. On the theory of a single-mode laser with weak optical feedback[J]. Physica C. 1984,125 : 255-264.
  • 7Perioux D. Paul Mandel. Bifurcation diagram of a complex delay-differential equation with cubic nonlinearity[J]. Phys Rev E.2003.67:056213 1-7.
  • 8Bi Q. Singular solitary waves associated with homoclinic orbits[J]. Phys Lett A.2006.352:227-232.
  • 9Jian Xu. Qishao Lu. Hopf bifurcation of time-delay Lienard equations[J]. International Journal of Bifurcation and Chaos, 1999,9(5) : 939-951.
  • 10徐鉴,陈予恕.时滞速度反馈对强迫自持系统动力学行为的影响[J].应用数学和力学,2004,25(5):455-466. 被引量:5

二级参考文献26

  • 1赵杰民 黄克累 等.一类带有时滞的动力系统的几个定理与应用[J].应用数学学报,1995,18:422-428.
  • 2艾利期哥尔兹 南开大学数学系编译中队(译).微分方程[M].北京:人民教育出版社,1959..
  • 3艾利斯哥尔兹 南开大学数学系编译中队(译).微分方程[M].北京:人民教育出版社,1959..
  • 4赵杰民,应用数学学报,1995年,18卷,422页
  • 5岳锡亭,数学年刊.A,1992年,13卷,135页
  • 6南开大学数学系,微分方程,1959年
  • 7CHEN Yu-shu, XU Jian. Bifurcation in nonlinear systems with parametric excitation [ J ]. Doklady Mothematics, 1997,56(3) :880-883.
  • 8Van der Pol B,Van der Mark J. Frequency demltiplication[J]. Nature, 1927,120(1) :363-364.
  • 9Wischert W, Wunderlin W, Pelster A, et al. Delay-induced instabilities in nonlinear feedback systems[J]. Phys Rev E, 1994,49( 1 ) :203-219.
  • 10Tass P, Kurths J, Rosenblum M G, et al. Delay-induced transitions in visually guided movements[J].Phys Rev E, 1996,54(3): R2224-R2227.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部