期刊文献+

基于核偏最小二乘法的动态预测模型在铜转炉吹炼中的应用 被引量:12

Application of dynamical prediction model based on kernel partial least squares for copper converting
在线阅读 下载PDF
导出
摘要 为实现铜转炉吹炼过程中的关键操作参数的准确预测,构造一种基于核偏最小二乘法的动态预测模型,并提出一种适用于动态建模的在线式异常样本剔除方法。该动态预测模型使用滑动窗方法不断更新建模数据,再利用核偏最小二乘法对动态模型的参数进行辨识,最后根据反馈的前次计算误差对本次预测值进行修正。仿真研究结果表明:该动态预估模型具有较好的泛化能力和较强的鲁棒性,并具有较好预测精度(风量预测的相对均方根误差小于10%,氧量预测的相对均方根误差小于19%)。目前,该预测模型被用于某转炉的吹炼辅助决策系统中。 In order to predict accurately the key operational parameters in copper converting process, a dynamical prediction model based on kernel partial least squares was constructed, and a method of online eliminating abnormal samples for dynamical model was presented. Firstly, moving widow method was utilized to update samples continuously in dynamical prediction model. Then, kernel partial least squares was used to identify parameters of dynamical model. Lastly, the prediction values were modified according to the last feedback computing errors. The simulation result shows that this dynamical prediction model has the performances like, better generalization, stronger robust, and preferable accuracy (the relative root mean square error of air is lower than 10%, and the relative root mean square error of oxygen is lower than 19%). Now, the prediction model is applied in the assistant decision-making system for a conner convener.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2007年第7期1201-1206,共6页 The Chinese Journal of Nonferrous Metals
基金 国家重点基础研究发展规划资助项目(2002cb312200) 国家自然科学基金重点资助项目(60634020 60574030 50374079) 博士点基金(20050533016)
关键词 动态预测模型 在线式异常样本剔除 核偏最小二乘法 关键操作量预测 铜转炉吹炼 dynamical prediction model online eliminating abnormal samples kernel partial least squares method copper converting
作者简介 通讯作者;宋海鹰,博士研究生;电话:0731—8830394;E-majl:songhaiying1975@163.com
  • 相关文献

参考文献17

二级参考文献50

  • 1罗荣富,邵惠鹤.分布式网络局部学习方法及其在推断控制中的应用[J].自动化学报,1994,20(6):739-742. 被引量:12
  • 2丁容,刘浏.转炉炼钢过程人工智能静态控制模型[J].钢铁,1997,32(1):22-26. 被引量:37
  • 3Zhu Q M,Cai Y,Liu L Z.A Global Learning Algorithm for a RBF Network[J].Neural Networks,1999,12(3):527-540.
  • 4Imran Tasadduq,Shafiqur Rehman,Khaled Bubshait.Application of Neural Networks for the Prediction of Hourly Mean Surface Temperatures in Saudi Arabia[J].Renewable Energy,2002,25(4):545-554.
  • 5Li A J,Li H J,Li K Z,et al.Applications of Neural Networks and Genetic Algorithms to CVI Processes in Carbon/Carbon Composites[J].Acta Materialia,2004,52(2):299-305.
  • 6Sanghamitra Bandyopadhyay,Ujjwal Maulik.An Evolutionary Technique Based on K-means Algorithm for Optimal Clustering in R\+N[J].Information Sciences,2002,146(1-4):221-237.
  • 7Moody J,Darken C.Fast Learning in Networks of Locally-tuned Processing Units[J].Neural Computation,1989,1(2):281-294.
  • 8Funahashi K I. On the approximate realization of continuous mappings by neural networks[J]. Neural Networks, 1989(2):183 - 192.
  • 9CHEN S, Billings S A. Neural networks for nonlinear dynamic system modeling and identification[J]. Int J Control, 1992, 56(2): 319-346.
  • 10WU Min, Nakano M, SHE Jin-hua. A model-based expert control strategy using neural networks for the coal blending process in an iron and steel plant[J]. Expert Systems with Applications, 1999(16): 271 -281.

共引文献106

同被引文献133

引证文献12

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部