期刊文献+

用BP神经网络预测数控铣削变形 被引量:7

Milling Deformation Forecast with BP Neural Network
在线阅读 下载PDF
导出
摘要 铣削变形问题一直是影响薄壁件加工精度的瓶颈问题。由于引起铣削变形的因素较多以及铣削过程本身的复杂性,使得铣削参数与变形量之间的关系很难用准确的解析式来表示。因此借助神经网络的非线性映射能力,建立了变形量与铣削参数之间的非线性映射模型。结果显示:所建立的神经网络模型具有较高的精度和良好的泛化能力。该研究为进一步的铣削参数优化提供了保障。 Processing deformation in the course of numerical control milling is a key problem of influencing the thin -walled workpiece's machining precision. Because of the complicacy of milling processing and many factors of causing deformation, it is difficult to obtain an exact analytical formula to express the intricate relationship of milling parameters and deformation. So with the help of ANN's powerful non - linear mapping ability, this paper has established a non - linear mapping model between milling parameters and deformation. Results show that the model is feasible and effective. This research will provide foundation for further optimization of milling parameters.
出处 《制造技术与机床》 CSCD 北大核心 2007年第8期48-50,共3页 Manufacturing Technology & Machine Tool
关键词 铣削变形 BP神经网络 变形预测 Milling Deformation BP Neural Networks Deformation Forecast
  • 相关文献

参考文献4

二级参考文献12

  • 1Zhao D M, Dong Q M, et al. Structure and strength of the age hardened Cu-Ni-Si alloy[J]. Materials Chemistry and Physics, 2003,79(2) :81 - 86.
  • 2Choi H I.Fabrication of high conductivity copper alloys by rod milling[J]. Journal of Materials Science Letters, 1997,16:1600 - 1602.
  • 3Gao N, Saarivirta E H. Influence of deformation on the age hardening of a phosphorus containing Cu-0.61% Cr alloy [J]. Material Science and Engineering, 2003, A 342:270 - 278.
  • 4Fernee H. Cold worked Cu-Fe-Cr alloys[J]. Journal of Materials and Science, 2001,36: 5497 - 5510.
  • 5张智星 孙春在.模糊神经和软计算[M].西安:西安交通大学出版社,1998.123-156.
  • 6Joines J A, White M W. Improved Generalization Using Robust Cost Function. IEEE/INNS Int Joint Conference of Neural Network[ M]. IEEE Press, 1992,911 - 918.
  • 7Basheer L A. Artificial neural network, computering, design, and application[ J]. Journal of Microbiological Methods, 2000,43:3-31.
  • 8Tamas Szecsi. Cutting force modeling using artificial neural networks [ J ] . Journal of Materials Processing Technology, 1999, 92/93: 344-349.
  • 9刘平,顾海澄,曹兴国.铜基集成电路引线框架材料的发展概况[J].材料开发与应用,1998,13(3):37-41. 被引量:56
  • 10卢碧红,黄文丽,葛研军.用人工神经网络预测切削力[J].机械工程师,2002(2):28-30. 被引量:3

共引文献17

同被引文献46

引证文献7

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部