期刊文献+

一种强高斯噪声的图像滤波方法 被引量:22

Method for filtering image contaminated with strong Gaussian noises
在线阅读 下载PDF
导出
摘要 针对图像中高方差的强高斯噪声特点,提出了一种图像噪声联合滤波的新方法。算法将受强高斯噪声污染的图像分为强噪声点集和弱噪声点集两部分,首先通过邻域像素强度值的变化特征,定位强噪声像素点,并采用改进的自适应均值滤波方法滤除,然后基于简化的脉冲耦合神经网络(PCNN)平滑弱噪声点像素。经实验结果验证,与已有的其他滤波方法相比,该算法在较好地滤除噪声的同时,具有良好的图像边缘保护和自适应能力。 A new joint method for filtering image contaminated with strong Gaussian noises was presented. The pixels of an image were divided into two sets. Strong noisy pixels were located firstly through estimating changes of pixel intensity in a local region of a pixel and were removed using a modified adaptive mean filter. Weak noisy pixels were smoothed with a simplified pulse-coupled neural network (PCNN). Experimental results show that the proposed method works well with both preserving edge and smoothing range adaptively in an image, compared with some existing image filtering methods.
出处 《计算机应用》 CSCD 北大核心 2007年第7期1637-1640,共4页 journal of Computer Applications
基金 陕西省教育科研项目(05JC13) 陕西省科技厅国际合作资助项目(2004WK-06)
关键词 高斯噪声 脉冲耦合神经网络 滤波 保护边缘 自适应 Gaussian noise Pulse-Couplod Neural Network (PCNN) filtering preserving edge adaptability
作者简介 石美红(1956-),女,江苏仪征人,教授、主要研究方向:图像处理、模式识别、智能信息处理;meihong_shi@263.com 毛江辉(1983-),男,江苏丹阳人,硕士研究生,主要研究方向:图像处理、并行计算; 梁颖(1980-),女,陕西汉中人,硕士研究生,主要研究方向:计算机网络安全; 龙世忠(1983-),男,江西吉安人,硕士研究生,主要研究方向:图像处理、并行计算。
  • 相关文献

参考文献5

二级参考文献39

  • 1章毓晋.图像工程(上)--图像处理和分析[M].北京:清华大学出版社,2000.1-46,81-106.
  • 2Lee Y H, Kassam S A, Generalized median filtering and related nonlinear filtering techniques [J ]. IEEE Transactions on Acoust, Speech, Signal Processing, 1985,33 (3) : 672 - 68.
  • 3[1]Yao Qingdong, Bi Houjie, Wang Zhaohua et al., Fundamental of Image Coding (in Chinese), Hangzhou: Zhejian University Press, 1993.
  • 4[2]Yang Shubin, Peng Fuyuan, Xie Zhiyuan et al., Laser underwater image filtering for pep and salt noisy images, Infrared and Laser Engineering (in Chinese), 2002, 31(4): 318―321.
  • 5[3]Xing Zangju, Qu Yanfeng, Xu Jian et al., Multi-window median filter for pep and salt contaminated images, Electronics and Information Journal (in Chinese), 2002, 24(12): 1912―1916.
  • 6[4]Sun, T., Neuvo, Y., Detail-preserving median based filters in image processing, Pattern Recognition Letter, 1994, 15: 341―347.
  • 7[5]Florencio, D., Schafer, R., Decision-based median filter using local signal statistics, Proc. SPIE Visual Communications and Image Processing '94, Vol.2308, 268―275. Aggelos K. Katsaggelos. Chicago, Sept. 1994.
  • 8[6]Eng How-Lung, Ma Kai-Kuang, Noise adaptive soft-switching median filter, IEEE Trans. on Image Processing, 2001, 10(2): 242―251.
  • 9[7]Eckhorn, R., Reiboeck, H. J., Arndt, M. et al., A neural networks for feature linking via synchronous activity: Results from cat visual cortex and from simulations, in Models of Brain Function (ed. Cotterill, R. M. J.), Cambridge: Cambridge Univ. Press, 1989.
  • 10[8]Eckhorn, P., Neural mechanisms of scene segmentation: recordings from the visual cortex suggest basic circuits or linking field models, IEEE Trans. Neural Networks, 1999, 10(3): 464―479.

共引文献244

同被引文献181

引证文献22

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部