期刊文献+

基于间接边界元法的管形振子双管布阵优化

Optimal arrangement of two tubular vibrators based on indirect boundary element method
在线阅读 下载PDF
导出
摘要 在分析管形振子结构及工作模式的基础上,对其在反应器内辐射声场的计算模型进行合理简化,利用间接边界元法计算了单个管形振子的辐射声场,通过实验验证了该计算方法的有效性。以两个管形振子在圆柱形槽中的布阵为例说明了布阵的优化方法。首先利用间接边界元方法计算了该系统的声场,然后以声场中一些平面上的声压平均值作为评价依据,比较了振子间距不同时的声场强弱,并通过观察振子间距不同时的声场分布情况判断声场的均匀性,从而达到优化布阵。实验结果表明该优化方案是可行的,为管形振子的工程应用提供了一定的技术依据。 To effectively use tubular vibrators in the large-scale liquid processing, arrangement to produce intense and uniform ultrasonic field should be understood. A calculation model for the radiated sound field of a tubular vibrator is properly simplified based on its structural and operation mode. The sound field of a single tubular vibrator is calculated using indirect boundary element method (IBEM), and validity of the calculation is tested in the experiment. An optimization method of arrangement is illustrated with an arrangement of two tubular vibrators in a cylindrical reactor. An optimal arrangement is achieved by comparing the intensities and uniformities in certain places of the sound fields generated by two vibrators with different spacing. The experimental result indicates that this optimization plan is feasible.
出处 《声学技术》 CSCD 北大核心 2007年第3期523-527,共5页 Technical Acoustics
基金 国家自然科学基金资助项目(10274053)
关键词 管形振子 布阵 优化 间接边界元法 tubular vibrator arrangement optimization indirect boundary element method
作者简介 通信作者梁召峰(1979-),男,陕西凤翔人,硕士,研究方向为超声工程。E-mail:liangzfszpt@gmail.com
  • 相关文献

参考文献7

二级参考文献29

  • 1[1]Kallivokas L F, Bielak J. Time-domain analysis of transient structural acoustics problems based on the finite method and a novel absorbing boundary element. J.Acoust.Soc.Am.,1993;94:3480-3492
  • 2[2]Everstine G C, Henderson F M. Coupled finite element/boundary element approach for fluid-structure interaction. J. Acoust.Soc.Am.,1990;87:1938-1947
  • 3[3]Lanlagnet B, Guyader J L. Modal analysis of a shell's acoustic radiation in light and heavy fluids.J.of Sound & Vibration,1989;131:397-415
  • 4[4]Seybert A F, Wu T W, Li W L. A coupled FEM/BEM for fluid-structre interaction using ritz vectors and eigenvectors. Trans. ASME,J. Vibr.Acoust.,1993;115:152-158
  • 5[5]Raveendra S T, Vlahopulos N, Glaves A. An indirect element formulation for multi-valued impedance simulation in structural acoustics. Applied Mathematical Modelling,1998;22:379-393
  • 6[6]Richard A J, Mathews I C. Solution of fluid-structure interaction problems using a coupled finite element and variational boundary element technique. J.Acoust.Soc.Am.,1990;88:2459-2466
  • 7[7]Giordano J A, Koopmann G H. State space boundary element-finite element coupling for fluid-structure interaction analysis.J.Acoust.Soc.Am.,1995;98:363-371
  • 8Seymour J D, Wallace H C, Gupta R B. Ultrasonics Sonochemistry, 1997, (4):289~293.
  • 9Romdhane M, Gadri A, Contamine F el al. Ultrasonics Sonochemistry, 1997, (4):235~243.
  • 10Jorg Hofmann, Ute Freier, Mike Wecks. Ultrasonics Sonochemistry, 2003, (10):271~275.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部