摘要
把免疫系统的免疫信息处理机制引入到粒子群优化(PSO)算法中,并与模糊C均值(FCM)算法相结合提出一种新的模糊聚类算法.新算法用免疫粒子群优化算法代替FCM算法的基于梯度下降的迭代过程,使算法具有较强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小的缺陷,同时也降低了FCM算法对初始值的敏感度.采用对当基思想初始化种群,获得更优的初始候选解,提高算法聚类过程中的收敛速度.以UCI机器学习数据库中的两组数据集为研究对象,实验结果表明,该算法优于基于PSO的模糊C均值聚类算法和FCM算法.
By combining the properties of both Particle Swarm Optimization (PSO) algorithm in which the immune information processing mechanism of immune system is involved and Fuzzy C-Means (FCM) method, a novel fuzzy clustering algorithm is proposed. The iteration process is replaced by the PSO algorithm with immunity based on the gradient descent of FCM, which makes the algorithm have a strong global searching capacity and avoids the local minimum problems of FCM. At the same time, FCM is no longer a large degree dependent on the initialization values. Moreover, it employs opposition-based learning for population initialization to obtain fitter starting candidate solutions and improve the conver- gence speed. A real application in classifying two data sets in UCI machine learning database is provided. Numerical experiments show that the proposed algorithm is better than fuzzy c-means clustering based on PSO and FCM.
出处
《西安工程科技学院学报》
2007年第3期355-361,共7页
Journal of Xi an University of Engineering Science and Technology
基金
陕西省教育厅自然科学专项基金资助项目(06JK286)
关键词
粒子群优化算法
模糊聚类
模糊C均值算法
免疫系统
对当基
particle swarm optimization
fuzzy clustering
fuzzy C-means algorithm
immune system
opposition-based learning
作者简介
贺兴时(1960-),男,陕西省富平县人,西安工程大学教授,硕士生导师,主要从事进化计算和数据挖掘等方面的研究.E-mail:xingshi_he@163.com.