摘要
设F是图G的一个边子集,若G-F不连通且它的每个连通分支至少有4个顶点,则称F是G的一个4阶边割。若G有四阶边割,把G的最小的四阶边割所含有的边数叫作G的四阶边连通度,记作λ4(G)。设G是简单连通图,阶至少为9。证明了除两类特殊图外,G的四阶边连通度是存在的。
An 4 th edge cut is an edge cut of a connected graph which disconnects this graph with each compo- nent having order at least 4. The 4th edge connectivity A4 (G) isthe minimum cardinality of all 4 th edge cuts. Let G be a connected graph of order ar least 9. Except for two special collection of graphs, the existence of the 4 th edge connectivity is presented.
出处
《科学技术与工程》
2007年第14期3337-3339,共3页
Science Technology and Engineering
关键词
图
四阶边连通度
存在性
graph
the 4th edge connectivity
existence