期刊文献+

闭凸多面体上广义变分不等式与互补问题的误差界 被引量:1

Error Bounds for Generalized Variational Inequalities and Generalized Nonlinear Complementarity Problem over a Closed Convex Polyhedral
在线阅读 下载PDF
导出
摘要 借助投影残量,我们给出了映射函数为γ-严格单调(γ-致P-函数)和Hoder连续的广义变分不等式问题(广义非线性互补问题)的绝对和相对误差界。以上结论推广了Solodov(2003),Xiu (2002)以及Pang(1987)中相关结论。 Based on the projection residue, we establish a global absolute and a global relative error bound estimation for generalized variational inequality problem (generalized nonlinear complementarity problem) over a closed convex polyhedral with the underlying mapping being 7-strict monotone (7 P-uniform) and Holder-continuous, respectively, which can be taken as an extension of the results in Solodov (2003), Xiu (2002) and Pang (1987).
出处 《工程数学学报》 CSCD 北大核心 2007年第4期691-695,共5页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10171055) 山东省自然科学基金(Y2003A02)
关键词 广义变分不等式 广义非线性互补问题 绝对误差界 相对误差界 GVIP GNCP global absolute error bound global relative error bound
作者简介 孙洪春(1967年2月生),男,硕士,副教授.研究方向:非线性规划的理论与算法.
  • 相关文献

参考文献6

  • 1Noor M A.General variational inequalities[J].Appl Math Lett,1988,1:119-121
  • 2Xiu N H,Zhong J Z.Global projection-type error bound for general variational inequlities[J].J Optim Theory Appl,2002,112(1):213-228
  • 3Pang J S.A posterriori error bound for the linearly-constrained variational inequality problem[J].Math of Operations Research,1987,12:474-484
  • 4Solodov M V.Convergence rate analysis of iteractive algorithms for solving variational inequality problems[J].Math Programming,2003,Ser A 96:513-528
  • 5Facchinei F,Pang J S.Finite-Dimensional Variational Inequalities and Complementarity Problems[M].Springer,New York,2003
  • 6Kinderlehrer D,Stampacchia G.An Introduction to Variational Inequalities and Their Applications[M].New York:NY,Academic Press,1980

同被引文献14

  • 1Cohen G. Auxiliary problem principle extend to variational inequality[ J]. J Optim Theory Appl, 1988,59(2) :325 -333.
  • 2Cottle R W, Giannessi F, Lions J. Variational Inequality:Theory and Applications [ M ]. New York :John Wiley & Sons, 1980.
  • 3Facchinei F, Pang J S. Finite- Dimensional Variational Inequalities and Complementarity Problems[ M ]. New York:Springer- Verlag,2003.
  • 4He Y R. A new double projection algorithm for variational inequalities [ J ]. J Comput Appl Math,2006,185:166 - 173.
  • 5Bnouhachem A, Noor M A. Inexact proximal point method for general variational inequalities [ J ]. J Math Anal Appl,2006,324: 1195 - 1212.
  • 6Ng K F, Tan L L. Error bounds of regularized gap functions for nonsmooth variational inequality problems [ J ]. Math Prograin, 2007, A110:405 - 429.
  • 7Tan L L. Regularized gap functions for nonsmooth variational inequality problems [ J ]. J Math Anal App1,2007,334:1022 - 1038.
  • 8Fan J H, Wang X G. Gap functions and global error bounds for set - valued variational inequalities [ J ]. J Comput Appl Math, 2010,233:2956 - 2965.
  • 9Yamashita N, Taji K, Fukushima M. Unconstrained optimization reformulations of variational inequality problems[ J ]. J Optim Theory Appl, 1997,92:439 - 456.
  • 10Solodov M V. Merit functions and error bounds for generalized variational inequalities [ J ].J Math Anal Appl, 2003,287: 405 - 414.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部