期刊文献+

基于图像特征的收获前籽棉品级聚类融合分析 被引量:1

Clustering Fusion for Preharvest Cotton Grades Based on Image Features
在线阅读 下载PDF
导出
摘要 为客观评价收获前籽棉品级,依据籽棉品级国家标准,基于机器视觉在3个颜色空间中选取棉瓣大小、色泽特征用K-均值、竞争学习网络方法对7个品级的样本进行聚类融合分析。结果表明,亮度修正后特征之间极显著相关,Hunter颜色空间较好。肉眼对第1、2、7品级的识别率为73%-100%,3-6品级为26%-46%,总计47.7%;聚类融合对各品级的识别率为65%-100%,总计78.6%。聚类融合方法基于人类的先验知识,在更宽的视觉范围内更均衡所有特征,可克服个体聚类器的过度训练,能够客观地识别收获前籽棉品级,提高其采摘、收购质量。 In order to assess preharvest cotton grades, according to Chinese government grading standard, clustering fusion was performed based on machine vision technologies by using K-means and competitive learning network to grade cotton quality with 7 categories renewedly based on their size, white, impurity and yellow in Ohta, HSI, and Hunter Color Spaces. Correlation analysis showed that the Peason' s correlations among image features were significant at the 0.01 probability level by adjusting image intensity and Hunter Color Space to an approximate optimum; clustering by human eyes did not consider all image features uniformly with fitting coefficients of quadratic polynomial of 0.55 -0.98 (0.88, 0.94, 0.98, 0.55) between cluster center of image features and grade value of cotton quality; individual clustering by K-means and competitive learning network also did not consider all image features uniformly with fitting coefficients of 0.32 - 0.74 (0.74, 0.63, 0.70, 0.32) and 0.39 - 0.94 (0.85, 0.39, 0.94, 0.84), respectively; and their clustering fusion considered all image features uniformly with fitting coefficients of 0.71 -0.99(0.89, 0.71, 0.99, 0.83). Bayes quadratic discriminants analysis for cotton graded showed that clustering by human eyes recognized the 1st, 2nd, 7th grades with accuracies of 73% - 100%, the grades 3 - 6 with accuracies of 26% - 46%, and total accuracy of 47.7% ; accordingly, clustering by K-means recognized each grade with accuracies of 93% - 100%, and total accuracy of 96%; clustering by competitive learning network recognized each grade with accuracies of 79 % - 95 %, and total accuracy of 86 % ; clustering fusion recognized each grade with accuracies of 65% - 100%, and total accuracy of 78.6%. On the whole, the average quality grade of clusering fusion was 4.33 while that of clustering by human eyes was 4.57, and the specimens with large recognization difference between the two methods were less than 1/3 of the total. Compared with by human eyes, clustering fusion can use each image feature more adequately and uniformly with the wider range of vision based on human's previous knowledge, and overcome the over-training of individual clustering, further, grade preharvest cottons objectively to improve high-quality cottons to be purchased, and this method can be generalized effectively to meet different environments.
出处 《作物学报》 CAS CSCD 北大核心 2007年第7期1162-1167,共6页 Acta Agronomica Sinica
基金 国家高技术研究发展计划(863计划)项目(2006AA10Z259) 江苏省农机基金项目(GXZ05013)
关键词 籽棉品级 机器视觉 图像特征 聚类融合 识别率 Cotton grade Machine vision Image features Cluster fusion Accuracy
作者简介 王玲(1966-),女,江西南昌人,副教授,博士研究生,从事计算机视觉与模式识别研究。 通讯作者(Corresponding author):姬长英。E-mail:lingw@njau.edu.cn;Tel:13913306944
  • 相关文献

参考文献20

  • 1Denning M L,Ramirez O A,Carpio C.Impact of quality on the profitability of irrigated cotton production on the Texas high plains.The Proceedings of the Beltwide Cotton Conference,Memphis TN.National Cotton Council,2001.Pp 208-216
  • 2Yachmenev V G,Kimmel L,Delhom C.Thermal insulation properties of nonwoven composite materials made from naturally colored cottons.Int Nonwovens J (Sci & Technol),2002,11(4):28-32
  • 3Shofner F M,Shofner C K.Cotton classing in the new millennium.In:The 25th International Cotton Conference Bremen,2000.Pp 1-20
  • 4Ureyen M E,Kadoglu H.Regressional estimation of ring cotton yarn properties from HVI fiber properties.Textile Res,2006,76 (5):360-366
  • 5万少安.棉花品质调查与分析[J].中国棉花加工,2000(5):18-21. 被引量:3
  • 6张丽娟,熊宗伟,周治国,陈兵林,薛晓萍.单纱强力的模拟模型研究[J].棉花学报,2006,18(2):120-123. 被引量:3
  • 7张丽娟,孟亚利,陈兵林,熊宗伟,薛晓萍,周治国.棉纤维综合品质指数模型的指标确定与建模[J].棉花学报,2005,17(4):217-221. 被引量:7
  • 8刘海涛,秦俊忠.影响感观检验棉花品级的主要因素[J].中国棉花加工,2005(6):29-30. 被引量:1
  • 9Xiong Z-W(熊宗伟)..Study on the Fiber Quality and the Classification of Color Grades of China's Cotton:Master Dissertation(硕士论文)..China Agricultural University(中国农业大学),,2005.Pp10-25..
  • 10李宁,刘东波,臧英明.中国棉花分级标准与国外棉花分级标准差异的研究[J].大连轻工业学院学报,2001,20(4):309-312. 被引量:11

二级参考文献55

共引文献55

同被引文献7

  • 1王玲,姬长英,陈兵林.基于形态学的黑背景下收获前棉花图像自动分割技术研究[J].棉花学报,2006,18(5):299-303. 被引量:5
  • 2棉花细绒棉[s].北京:中国标准出版社,2009.
  • 3WANG YONG, ZHU XIAORONG, JI CHANGYING. Machine vi- sion based cotton recognition for cotton harvesting robot [ C ]// CCTA 2007: Proceedings of the First IFIP TC 12 International Con- ference on Computer and Computing Technologies in Agriculture. Berlin: Springer, 2008:1421-1425.
  • 4WANG LING, JI CHANGYING. By using machine vision ranking for preharvest cottons [ C]// CCTA 2007: Proceedings of the First IFIP TC 12 International Conference on Computer and Computing Technologies in Agriculture. Berlin: Springer, 2008: 1465- 1469.
  • 5WANG LING, JI CHANGYING. Summary of pivotal technique of cotton-harvest robot [C]//CCTA 2007: Proceedings of the First IF- IP TC 12 International Conference on Computer and Computing Technologies in Agricuhure. Berlin: Springer, 2008: 1459-1463.
  • 6王玲,姬长英,陈兵林,刘善军,王萍.基于机器视觉技术的田间籽棉品级抽样分级模型研究[J].中国农业科学,2007,40(4):704-711. 被引量:10
  • 7王玲,姬长英,刘善军,陈兵林,王萍.基于竞争学习网络的田间籽棉图像分割[J].农业工程学报,2008,24(10):156-160. 被引量:2

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部