期刊文献+

层合中厚非圆截面柱壳非线性动力稳定性分析 被引量:2

Analysis of Nonlinear Dynamic Stability for Laminated Non-Circular Cross-section Calumn Thick Shells
在线阅读 下载PDF
导出
摘要 基于Timoshenko-Midlin假设及Hamilton变分原理,建立了层合中厚非圆柱壳的非线性运动控制方程,采用伽辽金技术,得到仅含时间参数的Mathieu型方程,然后应用增量谐波平衡法进行求解.数值计算中,以两端简支L曲线截面层合中厚柱壳为例,讨论了截面形状参数、几何非线性和横向剪切效应等因素对层合中厚非圆截面柱壳非线性动力稳定性的影响.结果表明:这些因素对层合L曲线截面中厚柱壳的非线性主要动力不稳定区域有较大影响. Based on the Timoshenko-Mindlin hypothesis and the Hamilton Principle, a set of governing equations of motion for the laminated non-circular cylindrical thick shells were founded. Using the Galerkin procedure, the Mathieu equation only with time variable was obtained, and this equation was solved by the method of increase harmonic balance. In numerical calculation, the laminated L-curve section cylindrical thick shells with both ends simply supported were investigated, and the effects of sectional shape, geometrically nonlinear factors and transverse shear on the nonlinear dynamic stability of laminated non-circular cylindrical shells were discussed. The results indicate these factors have a tremendous influence on the nonlinear dynamic stability of laminated non-circular cylindrical shells.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第6期54-58,共5页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(10572049)
关键词 层合非圆截面柱壳 横向剪切变形 非线性动力稳定性 laminated non-circular cylindrical shells transverse shear deformation nonlinear dynamic stability
作者简介 傅衣铭(1945-),男,湖南湘潭人,湖南大学教授,博士生导师;通讯联系人,E-mail:fym_2581@hnu.cn
  • 相关文献

参考文献4

二级参考文献15

  • 1唐文,陈铁云,王德禹.复合材料结构的动力屈曲研究进展[J].力学与实践,1997,19(1):9-14. 被引量:6
  • 2BOLOTIN V V. The Dynamic Stability of Elastic Systems [M]. San Francisco; Holen Day, 1964.
  • 3BERT C W V, Dyanmic instability of shear deformable antisymmetric angle-ply plates [J]. Int J Solids and Struct. 1987, 23(7)7 1053-1061.
  • 4AKITI C, ADRIAN G R, Dynamic instability of composite laminates using a higher order theory[J].Comput & Struct, 2000, 77(5): 453 -460.
  • 5HIROYUKI M. Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory [J], Compos Struct, 2000,48(5):231- 244.
  • 6REDDY J N. A simple higher-order theory for laminated composite plates [J]. J Appl Mech,1984(51): 745- 752.
  • 7[1] Budiansky B, Hutchinson J W. Dynamic buckling of imperfection sensitive structures[A]. Applied Mechanics[C]. Proceedings of 11th International Congress of Applied Mechanics. Frei burg I: Br Mun ich,1964.
  • 8[2] Bolotin V V. The Dynamic Stability of Elastic Systems[M]. V I Weingerten, et al, transl. San Francisco: Holden-Day Inc,1964.(English vers ion)
  • 9[3] Bogdanovich A E. Nonlinear problems of dynamic buckling of reinforced laminar cylindrical shells[J]. Soviet Applied Mechanics,1986,22(8):745—753.
  • 10[4] Dumir P C, Khatri K N. Axisymmetric static and dynamic buckling of orthotropic shallow conical caps[J]. AIAA Journal,1985,53(11):1762—1767.

共引文献13

同被引文献18

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部