期刊文献+

基于相空间重构和支持向量机的电能扰动分类方法 被引量:17

A Power Disturbance Classification Method Based on Phase Space Reconstruction and Support Vector Machines
在线阅读 下载PDF
导出
摘要 电能扰动的分类需要信号特性提取和分类器构造2个阶段,文中采用相空间重构和支持向量机的组合,提出了一种全新的电能扰动信号的分类方法。首先利用相空间重构方法构造扰动信号轨迹,通过编码获得二进制轨迹图像。针对该图像定义了4类具有区别性的指标,以表征不同扰动类型的特性。然后将特性指标作为支持向量机分类器的输入矢量,实现自动分类识别。算例表明该方法计算量少,正确率高,所需训练样本少,可以有效分类识别电压暂降、电压瞬升、电压中断、脉冲振荡、谐波、闪变等6种电能扰动。 Disturbance classification algorithms are always composed by two sequential processes: the signal feature extraction and the classifier design. A novel disturbance classification algorithm consisting of phase space reconstruction (PSR) and support vector machines (SVM) is presented. At first PSR is applied to construct disturbance signal trajectories converted into binary images by encoding in the next stage. For these binary images, four distinctive indices are proposed to represent discriminative features of different disturbance patterns. Then the obtained features are utilized as inputs into the SVM classifier to realize the automatic classification of power disturbances. Numerical results show that with the merits of less calculation burden, high accuracy and less demand of training samples, the method proposed can effectively classify six disturbance patterns including voltage sags, voltage swells, voltage interruptions, impulsive transients, harmonics and flickers.
出处 《电力系统自动化》 EI CSCD 北大核心 2007年第5期70-75,共6页 Automation of Electric Power Systems
基金 国家自然科学基金重点资助项目(50437010)
关键词 电能质量 扰动分类 相空间重构 支持向量机 power quality disturbance classification phase space reconstruction support vector machines
作者简介 李智勇(1982-),男,博士研究生,研究方向为电能质量检测与分析。E—mail:zhiyongrwx_ji11@163.com 吴为麟(1944-),男,教授,博士生导师,主要研究方向为电力电子在电力系统中的应用、电能质量、分布式发电,为本文通讯作者。E-mail:eewuwl@zju.edu.cn 林震宇(1981),男,硕士,研究方向为电能质量、自动化装置。
  • 相关文献

参考文献18

  • 1GEREK (O) N,ECE D G.Power-quality event analysis using higher order cumulants and quadratic classifiers.IEEE Trans on Power Delivery,2006,21(2):883-889.
  • 2LIAO Y,LEE J B.A fuzzy-expert system for classifying power quality disturbances.International Journal of Electrical Power and Energy Systems,2004,26(3):199-205.
  • 3梅雪,吴为麟.基于小波和ANN的电能质量分类方法[J].浙江大学学报(工学版),2004,38(10):1383-1386. 被引量:15
  • 4HE H B,STARZYK J A.A self-organizing learning array system for power quality classification based on wavelet transform.IEEE Trans on Power Delivery,2006,21(1):286-295.
  • 5徐永海,肖湘宁,杨以涵,陈学允.基于dq变换和ANN的电能质量扰动辨识[J].电力系统自动化,2001,25(14):24-28. 被引量:81
  • 6马骞,杨以涵,刘文颖,齐郑,郭金智.多输入特征融合的组合支持向量机电力系统暂态稳定评估[J].中国电机工程学报,2005,25(6):17-23. 被引量:139
  • 7YOUSSEF A M,ABDEL-GALIL T K,EL-SAADANY E F,et al.Disturbance classification utilizing dynamic time warping classifier.IEEE Trans on Power Delivery,2004,19 (1):272-278.
  • 8CHILUKURI M V,DASH P K,BASU K P.Time-frequency based pattern recognition technique for detection and classification of power quality disturbances// Proceedings of IEEE Region 10 Conference on Analog and Digital Techniques in Electrical Engineering:Vol C,Nov 21-24,2004,Chiang Mai,Thailand.Piscataway,NJ,USA:IEEE,2004:260-263.
  • 9ABDEL-GALIL T K,EL-SAADANY E F,YOUSSEF A M,et al.Disturbance classification using hidden markov models and vector quantization.IEEE Trans on Power Delivery,2005,23(3):2129-2135.
  • 10KANTZ H,SCHREIBER T.Nonlinear time series analysis.Cambridge,UK:Cambridge University Press,1997.

二级参考文献75

共引文献314

同被引文献213

引证文献17

二级引证文献202

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部