期刊文献+

基于光度立体法的翘板黑瓜子识别方法研究 被引量:8

Method for identification of wrinkled black melon seeds using photometric stereo
在线阅读 下载PDF
导出
摘要 针对目前翘板黑瓜子依赖手工检测效率低下的问题,提出了一种利用光度立体视觉算法进行翘板瓜子识别的方法。首先利用实物表面重建的方法标定了图像采集系统的精度;然后针对黑瓜子表面中间区域与周边区域颜色有巨大差异的特殊形态,分区域三维重建了黑瓜子表面;最后通过试验确定表面面积为识别特征,识别阈值为9,在误识率小于5%的情况下,翘板瓜子识别率达90%。试验结果表明应用光度立体视觉算法可以有效地进行翘板黑瓜子的识别。 At present, the cleaning of wrinkled black melon seeds is performed manually, which has extremely low efficiency. As to the problem, a method for identifying wrinkled black melon seeds with photometric stereo is proposed in this paper. First, the accuracy of image capturing system was calibrated by constructing a testing entity surface. Then, as there was a great color difference between the central and the periphery area of the black melon seeds, the two parts of surfaces were separately reconstructed. Finally, experiments were done to determine transverse surface area as the identification feature, and the threshold is nine. It was shown that more than 90% of the wrinkled melon seeds could successfully be identified while the error rate is below 5%. From the experiments, it can be concluded that the algorithm of photometric stereo can be used to identify the wrinkled black melon seeds effectively.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2007年第5期159-163,共5页 Transactions of the Chinese Society of Agricultural Engineering
基金 高等学校博士学科点专项科研基金(20050019005)
关键词 机器视觉 表面三维重建 光度立体法 翘板黑瓜子识别 machine vision three-dimensional surface reconstruction photometric stereo identification of wrinkled black melon seeds
作者简介 李昊宇(1981-),男,山西大同人,研究方向:视觉检测。北京中国农业大学工学院,100083。Email:lihaoy1128@163.com 通讯作者:李伟,教授,博士生导师,主要研究领域为计算机视觉检测技术,农业自动化装备技术。北京市海淀区清华东路17号中国农业大学工学院,100083。Email:gxy5@cau.edu.cn
  • 相关文献

参考文献5

二级参考文献28

  • 1[1]Xu B,Reed J A.Instrumental evaluation of fabric wrinkle recovery.Journal of Textile Institute,1995,86(1):129~ 135
  • 2[2]Xu B,Cuminato D F.Evaluatirg fabric smoothness appearance with a laser profilometer.TRJ,1998,68(12):900~906
  • 3[3]Kang T J,Cho D H.A new objective method of measuring fabric wrinkles using a 3-D projecting grid technique.T R J,1999,69(4):261 ~ 268
  • 4[4]Nayar S K,Ikeuchi K,Kunade T.Extracting shape from reflectance of hybrid surfaces by photometric sampling.Image Understanding Workshop,1989,10:563 ~ 583
  • 5[5]K.Ikeuchi.Determining surface orientations of specular surfaces by using the photometric stereo methods.IEEE Trans Pattem Anal Mach lntelligence 3,1981,661~669
  • 6[6]Kyoung M L.Shape from shading with a generalized reflectance map model.Computer Vision and Image Understanding,1997,67(2):143 ~ 160
  • 7[7]Super B J,Bovik A C.Shape from texture by wavelet-based measurement of local spectral moments.IEEE Conference on Computer Vision and Pattern Recognition,1992,6:296~ 300
  • 8[8]Nitin M V,Kim L B.Discontinuity-preserving surface reconstruction using stochastic differential equations.Computer Vision and Image Understandirg,1998,72(3):257 ~ 270
  • 9[9]Jun W H.Wavelet-Based Shape from Shading.Graphical Models and Image Processing,1998,57(4):343 ~ 362
  • 10[10]Woodham R J.Photometric Stereo:A reflectance map technique for determining surface orientation from a single view.Proc SPIE,1978,155:136 ~ 143

共引文献112

同被引文献89

引证文献8

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部