期刊文献+

最大熵分布算法及其应用 被引量:5

Maximum entropy distribution algorithm and its application
在线阅读 下载PDF
导出
摘要 分布估计算法是一种新的基于种群进化的算法,它通过统计当前群体中较优个体的信息构建其概率分布模型,然后对模型进行抽样生成下一代群体。针对分布估计算法在求解搜寻最优网络结构的NP-Hard问题,提出一种新的最大熵分布算法,该算法以Jaynes原理为依据,利用随机变量的最大熵估计随机变量的最小偏见概率分布,并以此作为算法的进化模型,有效地降低了算法的计算复杂度。以旅行商问题和误导问题为例所进行的计算结果证明了该算法具有更高的全局搜索能力与更稳定的收敛性。 Estimation of distribution algorithms (EDAs) are a new kind of colony evolution algorithms, through counting the excellent information of the individuals of present colony EDAs construct a probability distribution model, then sample the model to produce the next generation. To solve the NP-Hard question as EDAs searching the optimum network structure a new maximum entropy distribution algorithm(MEDA) is provided. Based on the Jaynes theory MEDA uses maximum entropy of random variables to estimate their least bias probability distribution and treats it as an evolution model, thus effectively reduces the complexity of MEDA. The test of the traveling salesman problem and the deceptive problem proves the better searching ability and steady convergence of MEDA.
作者 陆琳 谭清美
出处 《系统工程与电子技术》 EI CSCD 北大核心 2007年第5期820-822,共3页 Systems Engineering and Electronics
基金 南京航空航天大学社会科学基金资助课题(V0683-092)
关键词 分布估计算法 概率 模型 estimation of distribution algorithm entropy probability model
作者简介 陆琳(1976-),男,博士研究生,主要研究方向为物流管理和系统工程。E-mail:landdoct@126.com
  • 相关文献

参考文献7

  • 1Larranaga P,Etxeberria R,Lozano J A,et al.Optimization by learning and simulation of Bayesian and Gaussian networks[J].Technical Report EHU-KZAA-IK-4/99,Univ.of the Basque Country,1999,12.
  • 2Muhlenbein H,Paa β G.From recombination of genes to the estimation of distribution algorithms I.Binary Parameters,Voigt H M,et al.(eds.):Lecture Notes in Computer Science1411:Parallel Problem Solving from Nature -PPSN IV,1996:178-187.
  • 3Zhang Q,Miihliebei H.On the convergence of a class of estimation of distribution algorithms[J].IEEE Trans.on Evolutionary Computation 2003,8(2):127-136.
  • 4Larranaga P,Etxeberria R,Lozano J A,et al.Optimization by learning and simulation of Bayesian and Gaussian networks[R].Technical Report EHU-KZAA-IK-4/99,Univ.of the Basque Country,1999(12).
  • 5Siddall J N.Probabilistic engineering design[M].New York:Principles and Applications,Marcel Dekker,1983.
  • 6www.iwr.uni-heidelberg.de/groups/comopt/softwarw/TS-PLIB95
  • 7Martin Pelikan,Heinz Muhlenbein.The bivariate marginal distribution algorithm[M].Roy In R,Furuhashi T,and Chawdhry P K,editors,Advances in Soft Computing-Engineering Design and Manufacturing,London,Springer-Verlag,1999:521-535.

同被引文献44

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部