摘要
协同优化是进行多学科设计优化的有效方法之一。本文将粒子群优化算法应用于协同优化,通过对系统级优化等式约束条件进行转换,克服了协同优化自身内部的计算缺陷,有效解决了当原始系统优化问题不满足Kuhn-Tucker条件时导致的计算困难,最后以数值计算和减速器设计为例进行了验证。结果表明本文提出的方法是有效的,同时也为将新型算法应用于多学科设计优化问题提供了参考。
Collaborative optimization (CO) is an to which the particle swarm optimization (PSO) effective algorithm method of multidisciplinary design optimization ( MDO), is applied. Through the transformation of the constraint conditions of the system-level optimization equation, calculation defects inherently existing in collaborative optimization are overcome, effectively solving the calculation difficulties caused when the original system optimization does not satisfy the Kuhn-Tucker conditions. Finally the CO is verified using numerical calculation and decelerator design as two examples. The verification results show that the proposed method is effective and applicable to MDO.
出处
《机械科学与技术》
CSCD
北大核心
2007年第4期424-427,共4页
Mechanical Science and Technology for Aerospace Engineering
基金
国家973计划项目(2004CB719405)资助
关键词
多学科优化
协同优化
粒子群优化算法
multidisciplinary design optimization(MDO)
collaborative optimization(CO)
particle swarm optimization(PSO) algorithm
作者简介
陈亚洲(1981-),男(汉),福建,硕士研究生,chenyazhou8105@126.com