期刊文献+

维生素对谷氨酸棒杆菌SYPS-062直接发酵合成L-丝氨酸的影响 被引量:16

Effects of Vitamins on the Direct Fermentative Production of L-serine in Corynebacterium glutamicum SYPS-062
在线阅读 下载PDF
导出
摘要 研究了VB1,生物素,VB6,VB2,叶酸和VB12对一株谷氨酸棒杆菌(Corynebacterium glutamicum)SYPS-062直接利用糖质原料发酵生产L-丝氨酸的影响,并且初步分析了这几种维生素对菌株SYPS-062发酵积累L-丝氨酸的调控机制。添加一定量的生物素,VB1和VB6表现出对L-丝氨酸积累分别为35%,28%和11%的促进;添加VB2实现了L-丝氨酸和生物量的等幅提高;而叶酸和VB12则通过促进菌株SYPS-062中1C单元循环的效率使L-丝氨酸的积累量分别提高了39%和82%,并且实现了产物转化率(YP/S)及单位细胞产率(YP/X)的显著提高。将6种维生素在其分别的最优浓度下复配,添加在发酵培养基中,结果发现发酵周期有6h左右的缩短,并且达到的最大生物量及L-丝氨酸的积累分别为11g/L和9.0g/L。 The effects of six vitamins on a novel isolate, Corynebacterium glutaraicum SYPS-062, which could directly produce L-serine from carbohydrates were investigated. The results show that all these tested vitamins- VB1, biotin, VB2, VB6, folate and VB12 could enhance the growth of C. glutamicum SYPS-062 and improve the production of L-serine. However, the mechanisms of their metabolic regulations were different. Although VB1, biotin and VB6 could enhance the L-serine degradation, the significant increasing of biomass induced the increment of L-serine accumulation, which was 31% ,28% and 11% higher than the control; VB2 improved both the biomass and the L-serine production equally, however didn't influence the distribution of metabolic pathway of L-serine; folate and VB12 could diminish L-serine degradation flux ratio and increase the YP/S and YP/X by accelerating the efficiency of the one carbon units metabolism. The final L-serine productions were 39% and 82% higher than the control. Finally, the fermentation period was 6 h shorter by adding all these vitamins at their optimal doses than by adding biotin only, and the accumulation of L-serine and the biomass were 9.0g/L and 11g/L, which were 70% and 76% higher than the control.
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2007年第5期50-55,共6页 China Biotechnology
基金 国家"973"计划资助项目(2007CB707804) 长江学者和创新团队发展计划资助项目(IRT0532)
关键词 L-丝氨酸 谷氨酸棒杆菌 维生素 代谢调 控优化 L-serine Corynebacterium glutamicum Vitamins Metabolic regulation Optimization
作者简介 通讯作者,电子信箱:zhenghxu@sytu.edu.cn.
  • 相关文献

参考文献18

  • 1蔡宇,吴梧桐.运用现代生物技术生产L-丝氨酸的研究进展[J].药学进展,1996,20(1):16-20. 被引量:8
  • 2冯美卿,曹秀格,卢永辉.L-丝氨酸制备方法评述[J].氨基酸和生物资源,2000,22(3):42-44. 被引量:22
  • 3Izumi Y,Yoshida T,Miyazaki S S,et al.L-serine production by a methylotroph and its related enzymes.Appl Microbiol Biotechnol,1993,39 (4-5):427~432
  • 4Kubota K,Yokozeki K.Production of L-serine from glycine by Corynebacterium glycinophilum and properties of serine hydroxymethyltransferase,a key enzyme in L-serine production.J Ferment Bioeng,1989,67:387~390
  • 5Peters-Wendisch P,Netzer R,Eggeling L,et al.3-Phosphoglycerate dehydrogenase from Corynebacterium glutamicum:the C-terminal domain is not essential for activity but is required for inhibition by L-serine.Appl Microbiol Biotechnol,2002,60(4):437~441
  • 6Simic P,Willuhn J,Sahm H,et al.Identification of glyA (encoding serine hydroxymethyltransferase) and its use together with the exporter ThrE to increase L-threonine accumulation by Corynebacterium glutamicum.Appl Environ Microbiol,2002,68(7):3321~3327
  • 7Netzer R,Peters-Wendisch P,Eggeling L,et al.Cometabolism of a nongrowth substrate:L-serine utilization by Corynebacterium glutamicum.Appl Environ Microbiol,2004,70(12):7148~7155
  • 8Peters-Wendisch P,Stolz M,Etterich H,et al.Metabolic engineering of Corynebacterium glutamicum for L-serine production.Appl Environ Microbiol,2005,71(11):7139~7144
  • 9魏东,谭慧林,杨海燕,崔春生,殷丽霞.L-丝氨酸高产菌株的选育和摇瓶发酵条件优化[J].氨基酸和生物资源,2006,28(1):46-48. 被引量:8
  • 10San K Y,Bennett G N,Berri'os-Rivera S J,et al.Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in E.Coli.Metab Eng,2002,4,182~192

二级参考文献42

  • 1卢发,张伟国.L-丝氨酸产生菌的分离筛选及发酵条件[J].食品与生物技术学报,2005,24(2):46-49. 被引量:7
  • 2卢发,张伟国.纸层析-分光光度法测定发酵液中L-丝氨酸和甘氨酸的含量[J].食品与发酵工业,2005,31(3):119-121. 被引量:20
  • 3Kramer R. Secretion of amino acids by bacteria: physiology and metabolism[J]. FEMS Microbiol Rev,1994, 13:75-94.
  • 4Kramer R. Systems and mechanisms of amino acid uptake and secretion in prokaryotes [J]. Arch Mtcrobiol, 1994, 162:1-13.
  • 5Kinoshita S, Udaka S, Shimono M. Amino acid fermentation, I. Production of L-glutamic acid by various microor- ganisms[J]. J Gen Appl Microbiol, 1957, 3: 193- 205.
  • 6Liebl W, Ehrmann M, Ludwig W,et al. Transfer of Brevibacterium divaricatum DSM 20297T, Brevibacterium. flavumDSM 20411, Brevibacterium lactofermentum DSM 20412 and DSM 1412,and Corynebacterium lilium DSM 20137T to Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns[J]. Int J Syst Bacteriol, 1991,41:255-260.
  • 7Eggeling L, Krumbach K, Shahm H. L-Glutamate efflux with Corynebacterium glutamicum: why is penicillin treatment or Tween addition doing the same[J]? J Mol Microbiol Biotechnol,2001, 3: 67-68.
  • 8Kramer R, Lambert C. Uptake of glutamate in Corynebacterium glutamicum. 2. Evidence for a primary active transport system[J]. Eur J Biochem, 1990,194: 937- 944.
  • 9Kimura E, Yaghoshi C, Kawahara Y,et al. Glutamate overproduction in Corynebacterium glutamicum triggered by a decrease in the level of a complex comprising DtsR and a biotin-containing subunit[J]. Biosci Blotechnol Biochem, 1999, 63:1274-1278.
  • 10Hirasawa T, Wachi M, Nagai K. A mutation in the Corynebacterium glutamicum ltsA gene causes susceptibility to lysozyme, temperature-sensitive growth, and glutamate production[J]. J Bacteriol, 2000,182: 2696- 2701.

共引文献49

同被引文献181

引证文献16

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部