期刊文献+

储层密度预测技术研究 被引量:8

Study on reservoir density prediction technique
在线阅读 下载PDF
导出
摘要 储层密度预测技术是一种基于改进的混合智能学习算法的地震非线性预测方法。它是利用地震波阻抗剖面在测井密度数据约束下,对目标问题编码产生染色体,将禁忌搜索算法加在遗传操作的交叉点上,使染色体不断进化,并按一定的概率自始至终执行遗传算法和模糊神经网络算法,且概率自适应变化,以达到混合算法均衡,实现储层密度预测,获得高分辨率和高精度的储层密度剖面。在获得的储层密度剖面基础上,利用流体密度计算技术,即可得到流体密度剖面。应用实例与统计表明,流体密度从富集油气层的密度变至水层的密度,其异常相对幅度可达70%以上,因此流体密度是预测油气层的一个“绝好参数”,它是反映流体性质的最直接证据。可为地震勘探直接寻找油气提供一个关键性参数。 The reservoir density prediction technique is a non-linear seismic prediction approach based on improved hybrid intelligent learning algorithm.Using seismic acoustic impedance section and the constraint of logging density data,the approach produces chromosome by encoding the target problem and adds the tabu searching algorithm at the cross points of genetic operation,making the chromosome evaluate constantly and carrying out genetic algorithm and ANFIS (Adaptive-Network-based Fuzzy Inference System)algorithm according to certain probability from the beginning to the end;meanwhile, the probability changes adaptively,making the hybrid algorithm reach equilibrium,realizing reservoir density prediction and yielding the reservoir density sections with high-resolution and high-precision.On the basis of obtaining reservoir density sections and using fluid density computation technique,the fluid density sections can be yielded.The application cases and statistics showed the relative amplitude anomaly could reach to 70% and above if fluid density changed from the density of oil/gas-rich layer to that of aquifer bed,so the fluid density is an excellent parameter of oil/gas layer prediction,which is direct proof reflecting the fluid nature and provides a key parameter to HI (hydrocarbon indicator) approach of seismic exploration.
出处 《石油地球物理勘探》 EI CSCD 北大核心 2007年第2期216-219,225,共5页 Oil Geophysical Prospecting
关键词 储层密度 流体密度 混合算法 地震预测技术 油气检测标志 reservoir density, fluid density,hybrid algorithm, seismic prediction technique,hydrocarbon indicator
作者简介 四川省成都市成都理工大学地球探测与信息技术教育部重点实验室,610059。
  • 相关文献

参考文献8

  • 1Goldberg D E. Genetic algorithms in search,optimization, and machine learning. Reading, MA, Addison- Wesley, 1989
  • 2Whitleyet D. Genetic algorithms and neural networks: optimizing connections and connectivity. Parallel Compution, 1990,14 : 347 ~ 361
  • 3焦李成.神经网络的应用和实现.西安:西安电子科技大学出版社,1993
  • 4戴葵等译.神经网络设计.北京:机械工业出版社,2003
  • 5Jang J S R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transaction on System, Man and Cybernetics, 1993,23(3) : 665~685
  • 6Glover F. Future paths for Integer programming and links to artifical intelligence. Computers and Operations Research, 1986,5 : 533 ~ 549
  • 7李勇,邵泽辉,李琼.地震优化非线性反演方法及应用研究[J].矿物岩石,2004,24(1):101-104. 被引量:10
  • 8Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. The Journal of The Acoustical Society of America, 1956,28(3)

二级参考文献9

  • 1焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1993..
  • 2MartinTHagan等著 戴葵等译.神经网络设计[M].北京:机械工业出版社,2003..
  • 3李正文.地震数据多参数约束反演及应用研究[J].石油地球物勘,1995,31(1).
  • 4张贤达.非平稳信号分析与处理[M].北京:国防工业出版社,1993..
  • 5Jang J S R. ANFIS: Adaptive-Network-based Fuzzy Inference Systems [J]. IEEE Transaction on Systems, Man and Cyberntics, 1993,(23): 665-685.
  • 6Martinez R D. Complex Reservoir Characterization by Multiparameter Constrained Inversion[R]. SEG/EAEG Research WorkShop Reservoir Geophysics, July31 - August 3,1988, Dallas, Texas.
  • 7Anderson J A. An Introduction to Neural Networks[M]. Cambridge,MA:MIT press, 1995.
  • 8李正文 等.沉积盆地有效储集层综合识别技术[M].成都:四川科学技术出版社,2003..
  • 9李敏强 等.遗传算法的基本理论与应用[M].北京:科学出版社,2003..

共引文献10

同被引文献67

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部