期刊文献+

混沌高效遗传算法在水库含沙量预报中的应用 被引量:1

CHAOS HIGHER EFFICIENT GENETIC ALGORITHM FOR THE FORECAST OF THE SEDIMENT CONCENTRATION IN RESERVOIR
在线阅读 下载PDF
导出
摘要 利用混沌映射的遍历性和实编码遗传算法的全局优化性,通过在遗传进化过程中加入混沌变异操作,在变量的定义域内投放大量的混沌初始群体,在实编码遗传算法进化过程中加入单纯形法学习算子,建立了一种新的混沌高效遗传算法(chaos higher efficient genetic algorithm,CHEGA).应用该法对3个非线性、高维、多峰值测试函数进行了仿真,在收敛速度和全局优化方面好于现有的简单遗传算法和改进的遗传算法.建立了水库含沙量预报模型.并将CHEGA用于求解上述模型的参数优化问题,与实数编码加速遗传算法(RAGA)、二进制加速遗传算法和随机优化算法等方法相比,CHEGA可以遍历到整个区域,较好的保持了种群的多样性,并且精度高、收敛速度快.CHEGA对求解实际水库计算模型的参数优化问题非常有效. A new algorithm, chaos higher efficient genetic algorithm (CHEGA), is proposed for the forecast of the sediment concentration in reservoir, in which initial population is generated by chaos algorithm and new chaos mutation operation is used. With the shrinking of searching range, the method gradually directs to optimal result by the excellent individuals obtained by real-encoded genetic algorithm embedding with simplex searching operator and simplex algorithm. The forecast model of the sediment concentration in reservoir is established. It is very efficient in maintaining the population diversity during the evolution process of genetic algorithm. Its efficiency is verified by application of three test functions compared with standard binary-encoded genetic algorithm and improved genetic algorithm. Compared with real-encoded accelerating genetic algorithm, binary-encoded accelerating genetic algorithm and random algorithm, CHEGA can get to the whole searching range and it has rapider convergent speed and higher calculation precision. It is good for the global optimization in the practical reservoir calculation.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期194-198,共5页 Journal of Beijing Normal University(Natural Science)
基金 水资源与水电工程科学国家重点实验室开放资助项目(2005B021) 国家重点基础研究发展规划资助项目(G2003CB415204)
关键词 预报模型 参数优化 遗传算法 混沌 含沙量 forecast model parameter optimization genetic algorithm chaos sediment concentration
  • 相关文献

参考文献10

  • 1Holland J H.Adaptation in natural and artificial systems[M].Ann Arbor:University of Michigan Press,1975
  • 2Andre J,Siarry P,Dognon T.An improvement of the standard genetic algorithm fighting premature convergence in continuous optimization[J].Advances in Engineering Software,2001(32):49
  • 3YANGXiaohua,YANGZhifeng,SHENZhenyao,LIJianqiang.Node ordinal encoded genetic algorithm for the optimal allocation of water resources[J].Progress in Natural Science:Materials International,2005,15(5):448-452. 被引量:7
  • 4金菊良,杨晓华,丁晶.基于实数编码的加速遗传算法[J].四川大学学报(工程科学版),2000,32(4):20-24. 被引量:201
  • 5薛嘉庆.最优化原理与方法[M].北京:冶金工业出版社,1986..
  • 6Lorenz E N.Deterministic non-periodic flows[J].Atmos Sci,1963,20(1):130
  • 7Lu Q Z,Shen G L,Yu R Q.A chaotic approach to maintain the population diversity of genetic algorithm in network training[J].Computational Biology and Chemistry,2003,27(3):363
  • 8Liu B,Wang L,Jin Y H,et al.Improved particle swarm optimization combined with chaos[J].Chaos Solitons and Fractals,2005,25(5):1261
  • 9蔡承德.龚嘴水库汛期合理调度方式探讨[J].四川水力发电,1994,13(1):36-41. 被引量:5
  • 10Steven C C,Raymond P C.Numerical methods for engineerings[M].3rd ed.北京:科学出版社,2000

二级参考文献15

共引文献213

同被引文献4

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部