期刊文献+

一类向量值正交小波的构造算法 被引量:1

An Algorithm for Constructing a Class of Orthogonal Vector-valued Wavelets
在线阅读 下载PDF
导出
摘要 引进向量值多分辨分析与向量值正交小波的概念。运用矩阵理论与仿酉向量滤波器理论,给出了向量值正交小波存在的充要条件。提供了一类紧支撑向量值正交小波的构造算法。 The notion of vector-valued multiresolution analysis is introduced, and the definition of orthogonal vector-valued wavelets is given. A sufficient and necessary condition for the existence of compactly supported orthogonal vector-valued wavelets is deriven by means of paraunitary vector filter bank theory and matrix theory. An algorithm for constructing a class of compactly supported orthogonal vector-valued wavelets with scale 2 is presented.
出处 《工程数学学报》 CSCD 北大核心 2007年第2期265-272,共8页 Chinese Journal of Engineering Mathematics
基金 河南省自然科学基金(0211044800).
关键词 向量值多分辨分析 向量值正交小波 加细方程 正定矩阵 vector-valued multiresolution analysis vector-valued wavelets refinement equation positive definite matrix
作者简介 陈清江(1966年2月生),男,博士,副教授,研究方向:小波分析理论及应用.
  • 相关文献

参考文献7

  • 1Turcajova R.An algorithm for the construction of symmetry orthogonal multiwavelets[J].SIAM Matrix Anal Appl,2003,25(2):532-550
  • 2Martin M B,Bell A E.New image compression technique using multiwavelet packets[J].IEEE Trans Image Processing,2001,10(4):500-511
  • 3Efromovich S,Lakey J,Pereyia M C,Tymes N J.Data-driven and optimal denoising of a signal using multiwavelets[J].IEEE Trans Signal Processing,2004,52(3):628-635
  • 4Kaneko H,Noren D R,Novaprateep B.Wavelet applications to the petrov-galerkin method for hammerstein equations[J].Appl Numer Math,2003,45(2):255-273
  • 5Xia X G,Suter B W.Vector-valued wavelets and vector fiter banks[J].IEEE Trans Signal Processing,1996,44(3):508-518
  • 6Fowler J E,Li H.Wavelet transforms for vector fields using omnidirectionally balanced multiwavelets[J].IEEE Trans Signal Processing,2002,50(12):3018-3027
  • 7Xia X G,Geronimo J S,Hardin D P,Suter B W.Design of prefilters for discrete multiwavelet transforms[J].IEEE Trans Signal Processing,1996,44(1):25-35

同被引文献4

  • 1Steffen P,Heller P N,Gopinath R A,et al.Theory of regular M-band wavelet bases[J].IEEE Trans.Signal Processing,1993,41:3497-3511.
  • 2Chui C K,Lian J A.Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale 3[J].Applied and Computational Harmonic Analysis,1995,2:21-52.
  • 3Xia X G,Suter B W.Vector-valued wavelets and vector filter banks[J].SIAM Math.Anal,1993,24(3):508-518
  • 4Daubechies I.Ten Lecture on Wavelet[M].Philadelphia:Capital City Press,1992.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部